-
Notifications
You must be signed in to change notification settings - Fork 67
/
evaluate.py
203 lines (171 loc) · 7.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
import tensorflow as tf
import tiny_faces_model as tiny_model
import util
from argparse import ArgumentParser
import cv2
import scipy.io
import numpy as np
import matplotlib.pyplot as plt
import cv2
import pickle
import pylab as pl
import time
import os
import sys
from scipy.special import expit
import glob
MAX_INPUT_DIM = 5000.0
def evaluate(weight_file_path, output_dir=None, data_dir=None, img=None, list_imgs=None,
prob_thresh=0.5, nms_thresh=0.1, lw=3, display=False,
draw=True, save=True, print_=0):
"""
Detect faces in images.
:param weight_file_path: A pretrained weight file in the pickle format
generated by matconvnet_hr101_to_tf.py.
:param output_dir: A directory into which images with detected faces are output.
default=None to not output detected faces
:param data_dir: A directory which contains images for face detection.
:param img: One image for face detection
:param prob_thresh: The threshold of detection confidence.
:param nms_thresh: The overlap threshold of non maximum suppression
:param lw: Line width of bounding boxes. If zero specified,
this is determined based on confidence of each detection.
:param display: Display tiny face images on window.
:param draw: Draw bouding boxes on images.
:param save: Save images in output_dir.
:param print_: 0 for no print, 1 for light print, 2 for full print
:return: final bboxes
"""
if type(img) != np.ndarray:
one_pic = False
else:
one_pic = True
if not output_dir:
save = False
draw = False
# list of bounding boxes for the pictures
final_bboxes = []
# placeholder of input images. Currently batch size of one is supported.
x = tf.placeholder(tf.float32, [1, None, None, 3]) # n, h, w, c
# Create the tiny face model which weights are loaded from a pretrained model.
model = tiny_model.Model(weight_file_path)
score_final = model.tiny_face(x)
# Load an average image and clusters(reference boxes of templates).
with open(weight_file_path, "rb") as f:
_, mat_params_dict = pickle.load(f)
# Average RGB values from model
average_image = model.get_data_by_key("average_image")
# Reference boxes of template for 05x, 1x, and 2x scale
clusters = model.get_data_by_key("clusters")
clusters_h = clusters[:, 3] - clusters[:, 1] + 1
clusters_w = clusters[:, 2] - clusters[:, 0] + 1
normal_idx = np.where(clusters[:, 4] == 1)
# Find image files in data_dir.
filenames = []
# if we provide only one picture, no need to list files in dir
if one_pic:
filenames = [img]
elif type(list_imgs) == list:
filenames = list_imgs
else:
for ext in ('*.png', '*.gif', '*.jpg', '*.jpeg'):
filenames.extend(glob.glob(os.path.join(data_dir, ext)))
# main
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for filename in filenames:
# if we provide only one picture, no need to list files in dir
if not one_pic and type(list_imgs) != list:
fname = filename.split(os.sep)[-1]
raw_img = cv2.imread(filename)
raw_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB)
else:
fname = 'current_picture'
raw_img = filename
raw_img_f = raw_img.astype(np.float32)
def _calc_scales():
"""
Compute the different scales for detection
:return: [2^X] with X depending on the input image
"""
raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]
min_scale = min(np.floor(np.log2(np.max(clusters_w[normal_idx] / raw_w))),
np.floor(np.log2(np.max(clusters_h[normal_idx] / raw_h))))
max_scale = min(1.0, -np.log2(max(raw_h, raw_w) / MAX_INPUT_DIM))
scales_down = pl.frange(min_scale, 0, 1.)
scales_up = pl.frange(0.5, max_scale, 0.5)
scales_pow = np.hstack((scales_down, scales_up))
scales = np.power(2.0, scales_pow)
return scales
scales = _calc_scales()
start = time.time()
# initialize output
bboxes = np.empty(shape=(0, 5))
# process input at different scales
for s in scales:
if print_ == 2:
print("Processing {} at scale {:.4f}".format(fname, s))
img = cv2.resize(raw_img_f, (0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
img = img - average_image
img = img[np.newaxis, :]
# we don't run every template on every scale ids of templates to ignore
tids = list(range(4, 12)) + ([] if s <= 1.0 else list(range(18, 25)))
ignoredTids = list(set(range(0, clusters.shape[0])) - set(tids))
# run through the net
score_final_tf = sess.run(score_final, feed_dict={x: img})
# collect scores
score_cls_tf, score_reg_tf = score_final_tf[:, :, :, :25], score_final_tf[:, :, :, 25:125]
prob_cls_tf = expit(score_cls_tf)
prob_cls_tf[0, :, :, ignoredTids] = 0.0
def _calc_bounding_boxes():
# threshold for detection
_, fy, fx, fc = np.where(prob_cls_tf > prob_thresh)
# interpret heatmap into bounding boxes
cy = fy * 8 - 1
cx = fx * 8 - 1
ch = clusters[fc, 3] - clusters[fc, 1] + 1
cw = clusters[fc, 2] - clusters[fc, 0] + 1
# extract bounding box refinement
Nt = clusters.shape[0]
tx = score_reg_tf[0, :, :, 0:Nt]
ty = score_reg_tf[0, :, :, Nt:2*Nt]
tw = score_reg_tf[0, :, :, 2*Nt:3*Nt]
th = score_reg_tf[0, :, :, 3*Nt:4*Nt]
# refine bounding boxes
dcx = cw * tx[fy, fx, fc]
dcy = ch * ty[fy, fx, fc]
rcx = cx + dcx
rcy = cy + dcy
rcw = cw * np.exp(tw[fy, fx, fc])
rch = ch * np.exp(th[fy, fx, fc])
scores = score_cls_tf[0, fy, fx, fc]
tmp_bboxes = np.vstack((rcx - rcw / 2, rcy - rch / 2, rcx + rcw / 2, rcy + rch / 2))
tmp_bboxes = np.vstack((tmp_bboxes / s, scores))
tmp_bboxes = tmp_bboxes.transpose()
return tmp_bboxes
tmp_bboxes = _calc_bounding_boxes()
bboxes = np.vstack((bboxes, tmp_bboxes)) # <class 'tuple'>: (5265, 5)
if print_ >= 1:
print("time {:.2f} secs for {}".format(time.time() - start, fname))
# non maximum suppression
refind_idx = tf.image.non_max_suppression(tf.convert_to_tensor(bboxes[:, :4], dtype=tf.float32),
tf.convert_to_tensor(bboxes[:, 4], dtype=tf.float32),
max_output_size=bboxes.shape[0], iou_threshold=nms_thresh)
refind_idx = sess.run(refind_idx)
refined_bboxes = bboxes[refind_idx]
# convert bbox coordinates to int
# f_box = overlay_bounding_boxes(raw_img, refined_bboxes, lw, draw)
f_box = [[int(x) for x in r[:4] for r in refined_bboxes]]
if display:
# plt.axis('off')
plt.imshow(raw_img)
plt.show()
if save:
# save image with bounding boxes
raw_img = cv2.cvtColor(raw_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(output_dir, fname), raw_img)
final_bboxes.append(f_box)
if len(final_bboxes) == 1:
final_bboxes = final_bboxes[0]
return final_bboxes