-
Notifications
You must be signed in to change notification settings - Fork 47
/
test_completion.py
631 lines (480 loc) · 26 KB
/
test_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from pprint import pprint
from metrics.evaluation_metrics import compute_all_metrics, EMD_CD
import torch.nn as nn
import torch.utils.data
import argparse
from torch.distributions import Normal
from utils.file_utils import *
from model.pvcnn_completion import PVCNN2Base
from datasets.shapenet_data_pc import ShapeNet15kPointClouds
from datasets.shapenet_data_sv import *
'''
models
'''
def normal_kl(mean1, logvar1, mean2, logvar2):
"""
KL divergence between normal distributions parameterized by mean and log-variance.
"""
return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2)
+ (mean1 - mean2)**2 * torch.exp(-logvar2))
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
# Assumes data is integers [0, 1]
assert x.shape == means.shape == log_scales.shape
px0 = Normal(torch.zeros_like(means), torch.ones_like(log_scales))
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 0.5)
cdf_plus = px0.cdf(plus_in)
min_in = inv_stdv * (centered_x - .5)
cdf_min = px0.cdf(min_in)
log_cdf_plus = torch.log(torch.max(cdf_plus, torch.ones_like(cdf_plus)*1e-12))
log_one_minus_cdf_min = torch.log(torch.max(1. - cdf_min, torch.ones_like(cdf_min)*1e-12))
cdf_delta = cdf_plus - cdf_min
log_probs = torch.where(
x < 0.001, log_cdf_plus,
torch.where(x > 0.999, log_one_minus_cdf_min,
torch.log(torch.max(cdf_delta, torch.ones_like(cdf_delta)*1e-12))))
assert log_probs.shape == x.shape
return log_probs
class GaussianDiffusion:
def __init__(self, betas, loss_type, model_mean_type, model_var_type, sv_points):
self.loss_type = loss_type
self.model_mean_type = model_mean_type
self.model_var_type = model_var_type
assert isinstance(betas, np.ndarray)
self.np_betas = betas = betas.astype(np.float64) # computations here in float64 for accuracy
assert (betas > 0).all() and (betas <= 1).all()
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.sv_points = sv_points
# initialize twice the actual length so we can keep running for eval
# betas = np.concatenate([betas, np.full_like(betas[:int(0.2*len(betas))], betas[-1])])
alphas = 1. - betas
alphas_cumprod = torch.from_numpy(np.cumprod(alphas, axis=0)).float()
alphas_cumprod_prev = torch.from_numpy(np.append(1., alphas_cumprod[:-1])).float()
self.betas = torch.from_numpy(betas).float()
self.alphas_cumprod = alphas_cumprod.float()
self.alphas_cumprod_prev = alphas_cumprod_prev.float()
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod).float()
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod).float()
self.log_one_minus_alphas_cumprod = torch.log(1. - alphas_cumprod).float()
self.sqrt_recip_alphas_cumprod = torch.sqrt(1. / alphas_cumprod).float()
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1. / alphas_cumprod - 1).float()
betas = torch.from_numpy(betas).float()
alphas = torch.from_numpy(alphas).float()
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.posterior_variance = posterior_variance
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.posterior_log_variance_clipped = torch.log(torch.max(posterior_variance, 1e-20 * torch.ones_like(posterior_variance)))
self.posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)
self.posterior_mean_coef2 = (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)
@staticmethod
def _extract(a, t, x_shape):
"""
Extract some coefficients at specified timesteps,
then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
"""
bs, = t.shape
assert x_shape[0] == bs
out = torch.gather(a, 0, t)
assert out.shape == torch.Size([bs])
return torch.reshape(out, [bs] + ((len(x_shape) - 1) * [1]))
def q_mean_variance(self, x_start, t):
mean = self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start
variance = self._extract(1. - self.alphas_cumprod.to(x_start.device), t, x_start.shape)
log_variance = self._extract(self.log_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data (t == 0 means diffused for 1 step)
"""
if noise is None:
noise = torch.randn(x_start.shape, device=x_start.device)
assert noise.shape == x_start.shape
return (
self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
self._extract(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
self._extract(self.posterior_mean_coef1.to(x_start.device), t, x_t.shape) * x_start +
self._extract(self.posterior_mean_coef2.to(x_start.device), t, x_t.shape) * x_t
)
posterior_variance = self._extract(self.posterior_variance.to(x_start.device), t, x_t.shape)
posterior_log_variance_clipped = self._extract(self.posterior_log_variance_clipped.to(x_start.device), t, x_t.shape)
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] ==
x_start.shape[0])
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, denoise_fn, data, t, clip_denoised: bool, return_pred_xstart: bool):
model_output = denoise_fn(data, t)[:,:,self.sv_points:]
if self.model_var_type in ['fixedsmall', 'fixedlarge']:
# below: only log_variance is used in the KL computations
model_variance, model_log_variance = {
# for fixedlarge, we set the initial (log-)variance like so to get a better decoder log likelihood
'fixedlarge': (self.betas.to(data.device),
torch.log(torch.cat([self.posterior_variance[1:2], self.betas[1:]])).to(data.device)),
'fixedsmall': (self.posterior_variance.to(data.device), self.posterior_log_variance_clipped.to(data.device)),
}[self.model_var_type]
model_variance = self._extract(model_variance, t, data.shape) * torch.ones_like(model_output)
model_log_variance = self._extract(model_log_variance, t, data.shape) * torch.ones_like(model_output)
else:
raise NotImplementedError(self.model_var_type)
if self.model_mean_type == 'eps':
x_recon = self._predict_xstart_from_eps(data[:,:,self.sv_points:], t=t, eps=model_output)
model_mean, _, _ = self.q_posterior_mean_variance(x_start=x_recon, x_t=data[:,:,self.sv_points:], t=t)
else:
raise NotImplementedError(self.loss_type)
assert model_mean.shape == x_recon.shape
assert model_variance.shape == model_log_variance.shape
if return_pred_xstart:
return model_mean, model_variance, model_log_variance, x_recon
else:
return model_mean, model_variance, model_log_variance
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
self._extract(self.sqrt_recip_alphas_cumprod.to(x_t.device), t, x_t.shape) * x_t -
self._extract(self.sqrt_recipm1_alphas_cumprod.to(x_t.device), t, x_t.shape) * eps
)
''' samples '''
def p_sample(self, denoise_fn, data, t, noise_fn, clip_denoised=False, return_pred_xstart=False):
"""
Sample from the model
"""
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(denoise_fn, data=data, t=t, clip_denoised=clip_denoised,
return_pred_xstart=True)
noise = noise_fn(size=model_mean.shape, dtype=model_mean.dtype, device=model_mean.device)
# no noise when t == 0
nonzero_mask = torch.reshape(1 - (t == 0).float(), [data.shape[0]] + [1] * (len(model_mean.shape) - 1))
sample = model_mean + nonzero_mask * torch.exp(0.5 * model_log_variance) * noise
sample = torch.cat([data[:, :, :self.sv_points], sample], dim=-1)
return (sample, pred_xstart) if return_pred_xstart else sample
def p_sample_loop(self, partial_x, denoise_fn, shape, device,
noise_fn=torch.randn, clip_denoised=True, keep_running=False):
"""
Generate samples
keep_running: True if we run 2 x num_timesteps, False if we just run num_timesteps
"""
assert isinstance(shape, (tuple, list))
img_t = torch.cat([partial_x, noise_fn(size=shape, dtype=torch.float, device=device)], dim=-1)
for t in reversed(range(0, self.num_timesteps if not keep_running else len(self.betas))):
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t,t=t_, noise_fn=noise_fn,
clip_denoised=clip_denoised, return_pred_xstart=False)
assert img_t[:,:,self.sv_points:].shape == shape
return img_t
def p_sample_loop_trajectory(self, denoise_fn, shape, device, freq,
noise_fn=torch.randn,clip_denoised=True, keep_running=False):
"""
Generate samples, returning intermediate images
Useful for visualizing how denoised images evolve over time
Args:
repeat_noise_steps (int): Number of denoising timesteps in which the same noise
is used across the batch. If >= 0, the initial noise is the same for all batch elemements.
"""
assert isinstance(shape, (tuple, list))
total_steps = self.num_timesteps if not keep_running else len(self.betas)
img_t = noise_fn(size=shape, dtype=torch.float, device=device)
imgs = [img_t]
for t in reversed(range(0,total_steps)):
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t, t=t_, noise_fn=noise_fn,
clip_denoised=clip_denoised,
return_pred_xstart=False)
if t % freq == 0 or t == total_steps-1:
imgs.append(img_t)
assert imgs[-1].shape == shape
return imgs
'''losses'''
def _vb_terms_bpd(self, denoise_fn, data_start, data_t, t, clip_denoised: bool, return_pred_xstart: bool):
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=data_start[:,:,self.sv_points:], x_t=data_t[:,:,self.sv_points:], t=t)
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(
denoise_fn, data=data_t, t=t, clip_denoised=clip_denoised, return_pred_xstart=True)
kl = normal_kl(true_mean, true_log_variance_clipped, model_mean, model_log_variance)
kl = kl.mean(dim=list(range(1, len(model_mean.shape)))) / np.log(2.)
return (kl, pred_xstart) if return_pred_xstart else kl
def p_losses(self, denoise_fn, data_start, t, noise=None):
"""
Training loss calculation
"""
B, D, N = data_start.shape
assert t.shape == torch.Size([B])
if noise is None:
noise = torch.randn(data_start[:,:,self.sv_points:].shape, dtype=data_start.dtype, device=data_start.device)
data_t = self.q_sample(x_start=data_start[:,:,self.sv_points:], t=t, noise=noise)
if self.loss_type == 'mse':
# predict the noise instead of x_start. seems to be weighted naturally like SNR
eps_recon = denoise_fn(torch.cat([data_start[:,:,:self.sv_points], data_t], dim=-1), t)[:,:,self.sv_points:]
losses = ((noise - eps_recon)**2).mean(dim=list(range(1, len(data_start.shape))))
elif self.loss_type == 'kl':
losses = self._vb_terms_bpd(
denoise_fn=denoise_fn, data_start=data_start, data_t=data_t, t=t, clip_denoised=False,
return_pred_xstart=False)
else:
raise NotImplementedError(self.loss_type)
assert losses.shape == torch.Size([B])
return losses
'''debug'''
def _prior_bpd(self, x_start):
with torch.no_grad():
B, T = x_start.shape[0], self.num_timesteps
t_ = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(T-1)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t=t_)
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance,
mean2=torch.tensor([0.]).to(qt_mean), logvar2=torch.tensor([0.]).to(qt_log_variance))
assert kl_prior.shape == x_start.shape
return kl_prior.mean(dim=list(range(1, len(kl_prior.shape)))) / np.log(2.)
def calc_bpd_loop(self, denoise_fn, x_start, clip_denoised=True):
with torch.no_grad():
B, T = x_start.shape[0], self.num_timesteps
vals_bt_, mse_bt_= torch.zeros([B, T], device=x_start.device), torch.zeros([B, T], device=x_start.device)
for t in reversed(range(T)):
t_b = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(t)
# Calculate VLB term at the current timestep
data_t = torch.cat([x_start[:, :, :self.sv_points], self.q_sample(x_start=x_start[:, :, self.sv_points:], t=t_b)], dim=-1)
new_vals_b, pred_xstart = self._vb_terms_bpd(
denoise_fn, data_start=x_start, data_t=data_t, t=t_b,
clip_denoised=clip_denoised, return_pred_xstart=True)
# MSE for progressive prediction loss
assert pred_xstart.shape == x_start[:, :, self.sv_points:].shape
new_mse_b = ((pred_xstart - x_start[:, :, self.sv_points:]) ** 2).mean(dim=list(range(1, len(pred_xstart.shape))))
assert new_vals_b.shape == new_mse_b.shape == torch.Size([B])
# Insert the calculated term into the tensor of all terms
mask_bt = t_b[:, None]==torch.arange(T, device=t_b.device)[None, :].float()
vals_bt_ = vals_bt_ * (~mask_bt) + new_vals_b[:, None] * mask_bt
mse_bt_ = mse_bt_ * (~mask_bt) + new_mse_b[:, None] * mask_bt
assert mask_bt.shape == vals_bt_.shape == vals_bt_.shape == torch.Size([B, T])
prior_bpd_b = self._prior_bpd(x_start[:,:,self.sv_points:])
total_bpd_b = vals_bt_.sum(dim=1) + prior_bpd_b
assert vals_bt_.shape == mse_bt_.shape == torch.Size([B, T]) and \
total_bpd_b.shape == prior_bpd_b.shape == torch.Size([B])
return total_bpd_b.mean(), vals_bt_.mean(), prior_bpd_b.mean(), mse_bt_.mean()
class PVCNN2(PVCNN2Base):
sa_blocks = [
((32, 2, 32), (1024, 0.1, 32, (32, 64))),
((64, 3, 16), (256, 0.2, 32, (64, 128))),
((128, 3, 8), (64, 0.4, 32, (128, 256))),
(None, (16, 0.8, 32, (256, 256, 512))),
]
fp_blocks = [
((256, 256), (256, 3, 8)),
((256, 256), (256, 3, 8)),
((256, 128), (128, 2, 16)),
((128, 128, 64), (64, 2, 32)),
]
def __init__(self, num_classes, sv_points, embed_dim, use_att,dropout, extra_feature_channels=3, width_multiplier=1,
voxel_resolution_multiplier=1):
super().__init__(
num_classes=num_classes, sv_points=sv_points, embed_dim=embed_dim, use_att=use_att,
dropout=dropout, extra_feature_channels=extra_feature_channels,
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier
)
class Model(nn.Module):
def __init__(self, args, betas, loss_type: str, model_mean_type: str, model_var_type:str):
super(Model, self).__init__()
self.diffusion = GaussianDiffusion(betas, loss_type, model_mean_type, model_var_type, args.svpoints)
self.model = PVCNN2(num_classes=args.nc, sv_points=args.svpoints, embed_dim=args.embed_dim, use_att=args.attention,
dropout=args.dropout, extra_feature_channels=0)
def prior_kl(self, x0):
return self.diffusion._prior_bpd(x0)
def all_kl(self, x0, clip_denoised=True):
total_bpd_b, vals_bt, prior_bpd_b, mse_bt = self.diffusion.calc_bpd_loop(self._denoise, x0, clip_denoised)
return {
'total_bpd_b': total_bpd_b,
'terms_bpd': vals_bt,
'prior_bpd_b': prior_bpd_b,
'mse_bt':mse_bt
}
def _denoise(self, data, t):
B, D,N= data.shape
assert data.dtype == torch.float
assert t.shape == torch.Size([B]) and t.dtype == torch.int64
out = self.model(data, t)
return out
def get_loss_iter(self, data, noises=None):
B, D, N = data.shape
t = torch.randint(0, self.diffusion.num_timesteps, size=(B,), device=data.device)
if noises is not None:
noises[t!=0] = torch.randn((t!=0).sum(), *noises.shape[1:]).to(noises)
losses = self.diffusion.p_losses(
denoise_fn=self._denoise, data_start=data, t=t, noise=noises)
assert losses.shape == t.shape == torch.Size([B])
return losses
def gen_samples(self, partial_x, shape, device, noise_fn=torch.randn,
clip_denoised=True,
keep_running=False):
return self.diffusion.p_sample_loop(partial_x, self._denoise, shape=shape, device=device, noise_fn=noise_fn,
clip_denoised=clip_denoised,
keep_running=keep_running)
def train(self):
self.model.train()
def eval(self):
self.model.eval()
def multi_gpu_wrapper(self, f):
self.model = f(self.model)
def get_betas(schedule_type, b_start, b_end, time_num):
if schedule_type == 'linear':
betas = np.linspace(b_start, b_end, time_num)
elif schedule_type == 'warm0.1':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.1)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.2':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.2)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.5':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.5)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
else:
raise NotImplementedError(schedule_type)
return betas
#############################################################################
def get_mvr_dataset(pc_dataroot, views_root, npoints,category):
tr_dataset = ShapeNet15kPointClouds(root_dir=pc_dataroot,
categories=[category], split='train',
tr_sample_size=npoints,
te_sample_size=npoints,
scale=1.,
normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=True)
te_dataset = ShapeNet_Multiview_Points(root_pc=pc_dataroot, root_views=views_root,
cache=os.path.join(pc_dataroot, '../cache'), split='val',
categories=[category],
npoints=npoints, sv_samples=200,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
)
return te_dataset
def evaluate_recon_mvr(opt, model, save_dir, logger):
test_dataset = get_mvr_dataset(opt.dataroot_pc, opt.dataroot_sv,
opt.npoints, opt.category)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers), drop_last=False)
ref = []
samples = []
masked = []
k = 0
for i, data in tqdm(enumerate(test_dataloader), total=len(test_dataloader), desc='Reconstructing Samples'):
gt_all = data['test_points']
x_all = data['sv_points']
B,V,N,C = x_all.shape
gt_all = gt_all[:,None,:,:].expand(-1, V, -1,-1)
x = x_all.reshape(B * V, N, C).transpose(1, 2).contiguous()
m, s = data['mean'].float(), data['std'].float()
recon = model.gen_samples(x[:, :, :opt.svpoints].cuda(), x[:, :, opt.svpoints:].shape, 'cuda',
clip_denoised=False).detach().cpu()
recon = recon.transpose(1, 2).contiguous()
x = x.transpose(1, 2).contiguous()
x_adj = x.reshape(B,V,N,C)* s + m
recon_adj = recon.reshape(B,V,N,C)* s + m
ref.append( gt_all * s + m)
masked.append(x_adj[:,:,:test_dataloader.dataset.sv_samples,:])
samples.append(recon_adj)
ref_pcs = torch.cat(ref, dim=0)
sample_pcs = torch.cat(samples, dim=0)
masked = torch.cat(masked, dim=0)
B, V, N, C = ref_pcs.shape
torch.save(ref_pcs.reshape(B,V, N, C), os.path.join(save_dir, 'recon_gt.pth'))
torch.save(masked.reshape(B,V, *masked.shape[2:]), os.path.join(save_dir, 'recon_masked.pth'))
# Compute metrics
results = EMD_CD(sample_pcs.reshape(B*V, N, C),
ref_pcs.reshape(B*V, N, C), opt.batch_size, reduced=False)
results = {ky: val.reshape(B,V) if val.shape == torch.Size([B*V,]) else val for ky, val in results.items()}
pprint({key: val.mean().item() for key, val in results.items()})
logger.info({key: val.mean().item() for key, val in results.items()})
results['pc'] = sample_pcs
torch.save(results, os.path.join(save_dir, 'ours_results.pth'))
del ref_pcs, masked, results
def evaluate_saved(opt, saved_dir):
# ours_base = '/viscam/u/alexzhou907/research/diffusion/shape_completion/output/test_chair/2020-11-04-02-10-38/syn'
gt_pth = saved_dir + '/recon_gt.pth'
ours_pth = saved_dir + '/ours_results.pth'
gt = torch.load(gt_pth).permute(1,0,2,3)
ours = torch.load(ours_pth)['pc'].permute(1,0,2,3)
all_res = {}
for i, (gt_, ours_) in enumerate(zip(gt, ours)):
results = compute_all_metrics(gt_, ours_, opt.batch_size)
for key, val in results.items():
if i == 0:
all_res[key] = val
else:
all_res[key] += val
pprint(results)
for key, val in all_res.items():
all_res[key] = val / gt.shape[0]
pprint({key: val.mean().item() for key, val in all_res.items()})
def main(opt):
exp_id = os.path.splitext(os.path.basename(__file__))[0]
dir_id = os.path.dirname(__file__)
output_dir = get_output_dir(dir_id, exp_id)
copy_source(__file__, output_dir)
logger = setup_logging(output_dir)
outf_syn, = setup_output_subdirs(output_dir, 'syn')
betas = get_betas(opt.schedule_type, opt.beta_start, opt.beta_end, opt.time_num)
model = Model(opt, betas, opt.loss_type, opt.model_mean_type, opt.model_var_type)
if opt.cuda:
model.cuda()
def _transform_(m):
return nn.parallel.DataParallel(m)
model = model.cuda()
model.multi_gpu_wrapper(_transform_)
model.eval()
with torch.no_grad():
logger.info("Resume Path:%s" % opt.model)
resumed_param = torch.load(opt.model)
model.load_state_dict(resumed_param['model_state'])
if opt.eval_recon_mvr:
# Evaluate generation
evaluate_recon_mvr(opt, model, outf_syn, logger)
if opt.eval_saved:
evaluate_saved(opt, outf_syn)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot_pc', default='ShapeNetCore.v2.PC15k/')
parser.add_argument('--dataroot_sv', default='GenReData/')
parser.add_argument('--category', default='chair')
parser.add_argument('--batch_size', type=int, default=50, help='input batch size')
parser.add_argument('--workers', type=int, default=16, help='workers')
parser.add_argument('--niter', type=int, default=10000, help='number of epochs to train for')
parser.add_argument('--eval_recon_mvr', default=True)
parser.add_argument('--eval_saved', default=True)
parser.add_argument('--nc', default=3)
parser.add_argument('--npoints', default=2048)
parser.add_argument('--svpoints', default=200)
'''model'''
parser.add_argument('--beta_start', default=0.0001)
parser.add_argument('--beta_end', default=0.02)
parser.add_argument('--schedule_type', default='linear')
parser.add_argument('--time_num', default=1000)
#params
parser.add_argument('--attention', default=True)
parser.add_argument('--dropout', default=0.1)
parser.add_argument('--embed_dim', type=int, default=64)
parser.add_argument('--loss_type', default='mse')
parser.add_argument('--model_mean_type', default='eps')
parser.add_argument('--model_var_type', default='fixedsmall')
parser.add_argument('--model', default='', required=True, help="path to model (to continue training)")
'''eval'''
parser.add_argument('--eval_path',
default='')
parser.add_argument('--manualSeed', default=42, type=int, help='random seed')
parser.add_argument('--gpu', type=int, default=0, metavar='S', help='gpu id (default: 0)')
opt = parser.parse_args()
if torch.cuda.is_available():
opt.cuda = True
else:
opt.cuda = False
return opt
if __name__ == '__main__':
opt = parse_args()
main(opt)