-
Notifications
You must be signed in to change notification settings - Fork 9
/
classify.py
321 lines (267 loc) · 12.2 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data as data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models
import os
import datetime
from utils import add_flops_counting_methods, accuracy, save_checkpoint, AverageMeter
model_names = ['resnext50', 'resnext50_elastic', 'resnext101', 'resnext101_elastic',
'dla60x', 'dla60x_elastic', 'dla102x', 'dla102x_elastic',
'se_resnext50', 'se_resnext50_elastic', 'densenet201', 'densenet201_elastic']
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnext50_elastic', choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnext50_elastic)')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=120, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('-g', '--num-gpus', default=8, type=int,
metavar='N', help='number of GPUs to match (default: 8)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=117, type=int,
metavar='N', help='print frequency (default: 117)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
best_err1 = 100
def main():
global args, best_err1
args = parser.parse_args()
print('config: wd', args.weight_decay, 'lr', args.lr, 'batch_size', args.batch_size, 'num_gpus', args.num_gpus)
iteration_size = args.num_gpus // torch.cuda.device_count() # do multiple iterations
assert iteration_size >= 1
args.weight_decay = args.weight_decay * iteration_size # will cancel out with lr
args.lr = args.lr / iteration_size
args.batch_size = args.batch_size // iteration_size
print('real: wd', args.weight_decay, 'lr', args.lr, 'batch_size', args.batch_size, 'iteration_size', iteration_size)
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)
# create model
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
# count number of parameters
count = 0
params = list()
for n, p in model.named_parameters():
if '.ups.' not in n:
params.append(p)
count += np.prod(p.size())
print('Parameters:', count)
# count flops
model = add_flops_counting_methods(model)
model.eval()
image = torch.randn(1, 3, 224, 224)
model.start_flops_count()
model(image).sum()
model.stop_flops_count()
print("GFLOPs", model.compute_average_flops_cost() / 1000000000.0)
# normal code
if not args.distributed:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
# cuda warm up
model = model.cuda()
image = torch.randn(args.batch_size, 3, 224, 224)
image_cuda = image.cuda()
for i in range(3):
start = time.time()
model(image_cuda).sum().backward() # Warmup CUDA memory allocator
print(time.time() - start)
# with torch.autograd.profiler.profile(use_cuda=True) as prof:
# start = time.time()
# model(image_cuda).sum().backward()
# print(time.time() - start)
# prof.export_chrome_trace('trace_gpu')
# import cProfile, pstats, io
# pr = cProfile.Profile(time.perf_counter)
# pr.enable()
# model(image_cuda).sum().backward()
# pr.disable()
# s = io.StringIO()
# sortby = 'cumulative'
# ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
# ps.print_stats()
# print(s.getvalue())
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD([{'params': iter(params), 'lr': args.lr},
], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'], strict=False) if 'state_dict' in checkpoint else print('no state_dict found')
optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else print('no optimizer found')
args.start_epoch = checkpoint['epoch'] if 'epoch' in checkpoint else args.start_epoch
best_err1 = checkpoint['best_err1'] if 'best_err' in checkpoint else best_err1
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch'] if 'epoch' in checkpoint else 'unknown'))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion)
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, iteration_size)
# evaluate on validation set
err1 = validate(val_loader, model, criterion)
# remember best err@1 and save checkpoint
is_best = err1 < best_err1
best_err1 = min(err1, best_err1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_err1': best_err1,
'optimizer': optimizer.state_dict(),
}, is_best, filename=args.arch + '_checkpoint.pth.tar')
print(str(float(best_err1)))
def train(train_loader, model, criterion, optimizer, epoch, iteration_size):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
optimizer.zero_grad()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(float(loss), input.size(0))
top1.update(100 - float(prec1), input.size(0))
top5.update(100 - float(prec5), input.size(0))
# compute gradient and do SGD step
loss.backward()
if i % iteration_size == iteration_size - 1:
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Err@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Err@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True)
# compute output
with torch.no_grad():
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(float(loss), input.size(0))
top1.update(100 - float(prec1), input.size(0))
top5.update(100 - float(prec5), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Err@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Err@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(str(datetime.datetime.now()) + ' * Err@1 {top1.avg:.3f} Err@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()