-
Notifications
You must be signed in to change notification settings - Fork 0
/
AWTinvivo.m
47 lines (42 loc) · 1.92 KB
/
AWTinvivo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function AWTinvivo
% SYNOPSIS AWTinvivo.m
%
% INPUT I : image for analysis
%
% OUTPUT metrics : Segmentated/de-noisied image with pixel intensity
% clusters
%
% DEPENDENCES AWTinvivo uses {SpotDetector, awt}
%
% example run: AWTinvivo;
%
% Alexandre Matov, December 16th, 2022
%I1 = imread('A:\Amydis\GC01.tif');
%I1 = imread('A:\Amydis\Glaucoma SDEB Eye #2\Bottom\GC 090622-2 Bottom 1 40x 2011 Ab-647 01-Image Export-01\GC 090622-2 Bottom 1 40x 2011 Ab-647 01-Image Export-01_ChS1-T2_ORG.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 170395\Cyno1_000.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 170395\Cyno1_004.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 180424\Cyno1_006.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 191797\Cyno1_003.tif');%NO
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 191800\Cyno1_004.tif');%NO
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 191815\Cyno1_004.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 191817\Cyno1_005.tif');
%I = imread('A:\Amydis\NHP Data for Alex\Cyno 191823\Cyno1_006.tif');%NO
[fileName,dirName] = uigetfile('*.tif','Julie, please select a TIF file for analysis');
I = imread([dirName,filesep,fileName]);
I1 = rgb2gray(I);
%figure, imshow(I1(500:700,1400:1600),[0 4095]);
I = double(I1(1:end-150,:));%(500:700,1400:1600))
[detectionResults, detectionMask] = spotDetector(I);
[value, indx] = max(detectionResults.totalInt);
%figure;
% imagesc(I); colormap(gray(256)); axis image; title('Raw Data - Image 13');
% figure
% imagesc(detectionMask); colormap(gray(256)); axis image; title('Wavelet Segmentation');
%figure,imshow(I,[])
%hold on
%plot(detectionResults.xmax(indx),detectionResults.ymax(indx),'ro')
figure
subplot(1,2,1); imagesc(I); colormap(gray(256)); axis image; title('Input');
subplot(1,2,2); imagesc(detectionMask); axis image; title('Detection');
hold on
plot(detectionResults.xmax(indx),detectionResults.ymax(indx),'ro')