forked from neha23nov/Bank_of_Baroda_Hackathon_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
60 lines (48 loc) · 1.72 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from keras.models import load_model
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('C:/Users/vansh/OneDrive/chatbot using python/chatbot/intents.json').read())
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
model = load_model('chatbot_model.h5')
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words (sentence):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
def predict_class (sentence):
bow = bag_of_words (sentence)
res = model.predict(np.array([bow]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({'intent': classes [r[0]], 'probability': str(r[1])})
return return_list
def get_response(intents_list, intents_json):
tag = intents_list[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice (i['responses'])
break
return result
print("GO! Bot is running!")
while True:
message = input("")
ints = predict_class (message)
res = get_response (ints, intents)
print (res)