forked from graphdeco-inria/hierarchical-3d-gaussians
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_single.py
264 lines (222 loc) · 13.2 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#
# Copyright (C) 2023 - 2024, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from utils.loss_utils import l1_loss, ssim
from utils.image_utils import psnr
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, get_expon_lr_func
import uuid
from tqdm import tqdm
from torch.utils.data import DataLoader
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
def direct_collate(x):
return x
def training(dataset, opt, pipe, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
if dataset.use_npy_depth:
opt.depth_l1_weight_init = 0.5
opt.depth_l1_weight_final = 0.5
depth_l1_weight = get_expon_lr_func(opt.depth_l1_weight_init, opt.depth_l1_weight_final, max_steps=opt.iterations)
ema_loss_for_log = 0.0
ema_Ll1depth_for_log = 0.0
psnr_val_for_log = 0.0
ssim_val_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
indices = None
training_generator = DataLoader(scene.getTrainCameras(), num_workers = 8, prefetch_factor = 1, persistent_workers = True, collate_fn=direct_collate)
iteration = first_iter
while iteration < opt.iterations + 1:
for viewpoint_batch in training_generator:
for viewpoint_cam in viewpoint_batch:
# background = torch.rand((3), dtype=torch.float32, device="cuda")
viewpoint_cam.world_view_transform = viewpoint_cam.world_view_transform.cuda()
viewpoint_cam.projection_matrix = viewpoint_cam.projection_matrix.cuda()
viewpoint_cam.full_proj_transform = viewpoint_cam.full_proj_transform.cuda()
viewpoint_cam.camera_center = viewpoint_cam.camera_center.cuda()
if not args.disable_viewer:
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
if keep_alive:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, indices = indices)["render"]
else:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, indices = indices)["depth"].repeat(3, 1, 1)
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background, indices = indices, use_trained_exp=True)
image, invDepth, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["depth"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
if viewpoint_cam.alpha_mask is not None:
alpha_mask = viewpoint_cam.alpha_mask.cuda()
image *= alpha_mask
Ll1 = l1_loss(image, gt_image)
Lssim = (1.0 - ssim(image, gt_image))
psnr_val = psnr(image, gt_image).mean().double()
ssim_val = (1.0 - Lssim).mean().double()
photo_loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * Lssim
loss = photo_loss.clone()
Ll1depth_pure = 0.0
if depth_l1_weight(iteration) > 0 and viewpoint_cam.depth_reliable:
if dataset.use_npy_depth:
mono_invdepth = viewpoint_cam.invdepthmap_npy.cuda()
depth_mask = viewpoint_cam.depth_mask_npy.cuda()
depth_error = torch.abs(invDepth[0][depth_mask] - mono_invdepth[depth_mask])
depth_error, _ = torch.topk(depth_error, int(0.95 * depth_error.size(0)), largest=False)
else:
mono_invdepth = viewpoint_cam.invdepthmap.cuda()
depth_mask = viewpoint_cam.depth_mask.cuda()
depth_error = torch.abs((invDepth - mono_invdepth) * depth_mask)
Ll1depth_pure = depth_error.mean()
Ll1depth = depth_l1_weight(iteration) * Ll1depth_pure
loss += Ll1depth
Ll1depth = Ll1depth.item()
else:
Ll1depth = 0
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * photo_loss.item() + 0.6 * ema_loss_for_log
ema_Ll1depth_for_log = 0.4 * Ll1depth + 0.6 * ema_Ll1depth_for_log
psnr_val_for_log = 0.4 * psnr_val + 0.6 * psnr_val_for_log
ssim_val_for_log = 0.4 * ssim_val + 0.6 * ssim_val_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}", "Depth Loss": f"{ema_Ll1depth_for_log:.{7}f}", "PSNR": f"{psnr_val_for_log:.{5}f}", "SSIM": f"{ssim_val_for_log:.{5}f}" , "Size": f"{gaussians._xyz.size(0)}"})
progress_bar.update(10)
# Log and save
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
print("peak memory: ", torch.cuda.max_memory_allocated(device='cuda'))
if iteration % opt.opacity_reset_interval == 0:
print()
if iteration == opt.iterations:
progress_bar.close()
return
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii)
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent)
if iteration % opt.opacity_reset_interval == 0:
#print("-----------------RESET OPACITY!-------------")
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.exposure_optimizer.step()
gaussians.exposure_optimizer.zero_grad(set_to_none = True)
if gaussians._xyz.grad != None and gaussians.skybox_locked:
gaussians._xyz.grad[:gaussians.skybox_points, :] = 0
gaussians._rotation.grad[:gaussians.skybox_points, :] = 0
gaussians._features_dc.grad[:gaussians.skybox_points, :, :] = 0
gaussians._features_rest.grad[:gaussians.skybox_points, :, :] = 0
gaussians._opacity.grad[:gaussians.skybox_points, :] = 0
gaussians._scaling.grad[:gaussians.skybox_points, :] = 0
if gaussians._opacity.grad != None:
relevant = (gaussians._opacity.grad.flatten() != 0).nonzero()
relevant = relevant.flatten().long()
if(relevant.size(0) > 0):
gaussians.optimizer.step(relevant)
else:
gaussians.optimizer.step(relevant)
print("No grads!")
gaussians.optimizer.zero_grad(set_to_none = True)
if not args.skip_scale_big_gauss:
with torch.no_grad():
vals, _ = gaussians.get_scaling.max(dim=1)
violators = vals > scene.cameras_extent * 0.02
if gaussians.scaffold_points is not None:
violators[:gaussians.scaffold_points] = False
gaussians._scaling[violators] = gaussians.scaling_inverse_activation(gaussians.get_scaling[violators] * 0.8)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
iteration += 1
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--disable_viewer', action='store_true', default=False)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
# default densify for half iterations.
args.densify_until_iter = args.iterations / 2
print("Iterations: ", args.iterations, "Densify iterations: ", args.densify_until_iter)
print("Optimizing " + args.model_path)
if args.eval and args.exposure_lr_init > 0 and not args.train_test_exp:
print("Reconstructing for evaluation (--eval) with exposure optimization on the train set but not for the test set.")
print("This will lead to high error when computing metrics. To optimize exposure on the left half of the test images, use --train_test_exp")
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
if not args.disable_viewer:
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")