Skip to content

Latest commit

 

History

History
140 lines (113 loc) · 4.89 KB

README.md

File metadata and controls

140 lines (113 loc) · 4.89 KB

Build instructions

Requirements

  • Working C and C++ toolchains(compiler, linker)
  • cmake
  • make or ninja

1. Clone Polygeist

git clone --recursive https://github.com/llvm/Polygeist
cd Polygeist

2. Install LLVM, MLIR, Clang, and Polygeist

Option 1: Using pre-built LLVM, MLIR, and Clang

Polygeist can be built by providing paths to a pre-built MLIR and Clang toolchain.

  1. Build LLVM, MLIR, and Clang:
mkdir llvm-project/build
cd llvm-project/build
cmake -G Ninja ../llvm \
  -DLLVM_ENABLE_PROJECTS="mlir;clang" \
  -DLLVM_TARGETS_TO_BUILD="host" \
  -DLLVM_ENABLE_ASSERTIONS=ON \
  -DCMAKE_BUILD_TYPE=DEBUG
ninja
ninja check-mlir

To enable compilation to cuda add -DMLIR_ENABLE_CUDA_RUNNER=1 and remove -DLLVM_TARGETS_TO_BUILD="host" from the cmake arguments. (You may need to specify CUDACXX, CUDA_PATH, and/or -DCMAKE_CUDA_COMPILER)

To enable the ROCM backend add -DMLIR_ENABLE_ROCM_RUNNER=1 and remove -DLLVM_TARGETS_TO_BUILD="host" from the cmake arguments. (You may need to specify -DHIP_CLANG_INCLUDE_PATH, and/or ROCM_PATH)

For faster compilation we recommend using -DLLVM_USE_LINKER=lld.

  1. Build Polygeist:
mkdir build
cd build
cmake -G Ninja .. \
  -DMLIR_DIR=$PWD/../llvm-project/build/lib/cmake/mlir \
  -DCLANG_DIR=$PWD/../llvm-project/build/lib/cmake/clang \
  -DLLVM_TARGETS_TO_BUILD="host" \
  -DLLVM_ENABLE_ASSERTIONS=ON \
  -DCMAKE_BUILD_TYPE=DEBUG
ninja
ninja check-polygeist-opt && ninja check-cgeist

For faster compilation we recommend using -DPOLYGEIST_USE_LINKER=lld.

1. GPU backends

To enable the CUDA backend add -DPOLYGEIST_ENABLE_CUDA=1

To enable the ROCM backend add -DPOLYGEIST_ENABLE_ROCM=1

2. Polymer

To enable polymer, add -DPOLYGEIST_ENABLE_POLYMER=1

This will cause the cmake invokation to pull and build the dependencies for polymer. To specify a custom directory for the dependencies, specify -DPOLYMER_DEP_DIR=<absolute-dir>. The dependencies will be build using the tools/polymer/build_polymer_deps.sh.

To run the polymer tests, use ninja check-polymer.

Option 2: Using unified LLVM, MLIR, Clang, and Polygeist build

Polygeist can also be built as an external LLVM project using LLVM_EXTERNAL_PROJECTS.

  1. Build LLVM, MLIR, Clang, and Polygeist:
mkdir build
cd build
cmake -G Ninja ../llvm-project/llvm \
  -DLLVM_ENABLE_PROJECTS="clang;mlir" \
  -DLLVM_EXTERNAL_PROJECTS="polygeist" \
  -DLLVM_EXTERNAL_POLYGEIST_SOURCE_DIR=.. \
  -DLLVM_TARGETS_TO_BUILD="host" \
  -DLLVM_ENABLE_ASSERTIONS=ON \
  -DCMAKE_BUILD_TYPE=DEBUG
ninja
ninja check-polygeist-opt && ninja check-cgeist

ninja check-polygeist-opt runs the tests in Polygeist/test/polygeist-opt ninja check-cgeist runs the tests in Polygeist/tools/cgeist/Test

Citing Polygeist

If you use Polygeist, please consider citing the relevant publications:

@inproceedings{polygeistPACT,
  title = {Polygeist: Raising C to Polyhedral MLIR},
  author = {Moses, William S. and Chelini, Lorenzo and Zhao, Ruizhe and Zinenko, Oleksandr},
  booktitle = {Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques},
  numpages = {12},
  location = {Virtual Event},
  series = {PACT '21},
  publisher = {Association for Computing Machinery},
  year = {2021},
  address = {New York, NY, USA},
  keywords = {Polygeist, MLIR, Polyhedral, LLVM, Compiler, C++, Pluto, Polly, OpenScop, Parallel, OpenMP, Affine, Raising, Transformation, Splitting, Automatic-Parallelization, Reduction, Polybench},
}
@inproceedings{10.1145/3572848.3577475,
  author = {Moses, William S. and Ivanov, Ivan R. and Domke, Jens and Endo, Toshio and Doerfert, Johannes and Zinenko, Oleksandr},
  title = {High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs},
  year = {2023},
  isbn = {9798400700156},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3572848.3577475},
  doi = {10.1145/3572848.3577475},
  booktitle = {Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming},
  pages = {119–134},
  numpages = {16},
  keywords = {MLIR, polygeist, CUDA, barrier synchronization},
  location = {Montreal, QC, Canada},
  series = {PPoPP '23}
}
@inproceedings{10444828,
  author = {Ivanov, Ivan R. and Zinenko, Oleksandr and Domke, Jens and Endo, Toshio and Moses, William S.},
  booktitle = {2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)},
  title = {Retargeting and Respecializing GPU Workloads for Performance Portability},
  year = {2024},
  volume = {},
  issn = {},
  pages = {119-132},
  doi = {10.1109/CGO57630.2024.10444828},
  url = {https://doi.ieeecomputersociety.org/10.1109/CGO57630.2024.10444828},
  publisher = {IEEE Computer Society},
  address = {Los Alamitos, CA, USA},
  month = {mar}
}