Skip to content

Latest commit

 

History

History

Shortest Path (Unweighted)

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

最短路径算法(Shortest Path (Unweighted Graph))

目标:找到图中从一个节点到另一个节点的最短路径。

假设我们以下图为例:

Example graph

我们可能想知道从节点A到节点F的最短路径是什么。

如果图是未加权的,那么找到最短路径很容易:我们可以使用广度优先搜索算法。 对于加权图,我们可以使用Dijkstra算法。

未加权图:广度优先搜索

广度优先搜索是遍历树或图数据结构的方法。 它从源节点开始,在移动到下一级邻居之前首先探索直接邻居节点。 方便的副作用是,它会自动计算源节点与树或图中其他每个节点之间的最短路径。

广度优先搜索的结果可以用树表示:

The BFS tree

树的根节点是广度优先搜索开始的节点。 为了找到从节点A到任何其他节点的距离,我们只计算树中边的数目。 所以我们发现AF之间的最短路径是2.树不仅告诉你路径有多长,而且还告诉你如何实际从AF(或者任何一个其他节点)。

让我们将广度优先搜索付诸实践,并计算从A到所有其他节点的最短路径。 我们从源节点A开始,并将其添加到队列中,距离为0

queue.enqueue(element: A)
A.distance = 0

队列现在是[A]。 我们将A出列并将其两个直接邻居节点BC入列,并设置距离1

queue.dequeue()   // A
queue.enqueue(element: B)
B.distance = A.distance + 1   // result: 1
queue.enqueue(element: C)
C.distance = A.distance + 1   // result: 1

队列现在是[B, C]。 将B出列,并将B的邻居节点DE入列,距离为2

queue.dequeue()   // B
queue.enqueue(element: D)
D.distance = B.distance + 1   // result: 2
queue.enqueue(element: E)
E.distance = B.distance + 1   // result: 2

队列现在是[C, D, E]。 将C出列并将C的邻居节点FG入队,距离为2

queue.dequeue()   // C
queue.enqueue(element: F)
F.distance = C.distance + 1   // result: 2
queue.enqueue(element: G)
G.distance = C.distance + 1   // result: 2

这么一直持续到队列为空,同时我们访问了所有节点。 每次我们发现一个新节点时,它会获得其父节点的distance加1.正如您所看到的,这正是广度优先搜索算法的作用, 除此之外,我们现在还知道距离寻找的路径。

这是代码:

func breadthFirstSearchShortestPath(graph: Graph, source: Node) -> Graph {
  let shortestPathGraph = graph.duplicate()

  var queue = Queue<Node>()
  let sourceInShortestPathsGraph = shortestPathGraph.findNodeWithLabel(label: source.label)
  queue.enqueue(element: sourceInShortestPathsGraph)
  sourceInShortestPathsGraph.distance = 0

  while let current = queue.dequeue() {
    for edge in current.neighbors {
      let neighborNode = edge.neighbor
      if !neighborNode.hasDistance {
        queue.enqueue(element: neighborNode)
        neighborNode.distance = current.distance! + 1
      }
    }
  }

  return shortestPathGraph
}

在playground中进行测试:

let shortestPathGraph = breadthFirstSearchShortestPath(graph: graph, source: nodeA)
print(shortestPathGraph.nodes)

输出结果:

Node(label: a, distance: 0), Node(label: b, distance: 1), Node(label: c, distance: 1),
Node(label: d, distance: 2), Node(label: e, distance: 2), Node(label: f, distance: 2),
Node(label: g, distance: 2), Node(label: h, distance: 3)

**注意:**这个版本的breadthFirstSearchShortestPath()实际上并不生成树,它只计算距离。 有关如何通过去除边缘将图转换为树,请参见最小生成树

作者:Chris Pilcher,Matthijs Hollemans
翻译:Andy Ron
校对:Andy Ron