- 时间:2020-07-13
- 题目链接:https://leetcode-cn.com/problems/minimum-path-sum
- tag:
动态规划
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
这道题是在不同路径基础上改一改就行了
dp[i][j] = dp[i][j], i = 0, j = 0
dp[i][j] + dp[i][j - 1], i = 0
dp[i][j] + dp[i - 1][j], j = 0
dp[i][j] + Math.min(dp[i][j - 1], dp[i - 1][j]), i != 0, j != 0
class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int[] cur = new int[n];
for (int j = 0; j < n; j++) {
cur[j] = j == 0 ? grid[0][0] : cur[j - 1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for(int j = 0; j < n; j++) {
cur[j] = j == 0 ? cur[j] + grid[i][0] : Math.min(cur[j], cur[j - 1]) + grid[i][j];
}
}
return cur[n - 1];
}
}
直接在原数组上覆盖即可
class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
for (int j = 0; j < n; j++) {
grid[0][j] = j == 0 ? grid[0][0] : grid[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for(int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
continue;
} else if (i == 0) {
grid[i][j] = grid[i][j - 1] + grid[i][j];
} else if (j == 0) {
grid[i][j] = grid[i - 1][j] + grid[i][j];
} else {
grid[i][j] = Math.min(grid[i -1][j], grid[i][j - 1]) + grid[i][j];
}
}
}
return grid[m - 1][n - 1];
}
}