forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
planning.py
864 lines (734 loc) · 31.5 KB
/
planning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
"""Planning (Chapters 10-11)
"""
import itertools
from search import Node
from utils import Expr, expr, first, FIFOQueue
from logic import FolKB
class PDDL:
"""
Planning Domain Definition Language (PDDL) used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
"""
def __init__(self, initial_state, actions, goal_test):
self.kb = FolKB(initial_state)
self.actions = actions
self.goal_test_func = goal_test
def goal_test(self):
return self.goal_test_func(self.kb)
def act(self, action):
"""
Performs the action given as argument.
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
"""
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
if not list_action.check_precond(self.kb, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
list_action(self.kb, args)
class Action:
"""
Defines an action schema using preconditions and effects.
Use this to describe actions in PDDL.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negated literals.
Example:
precond_pos = [expr("Human(person)"), expr("Hungry(Person)")]
precond_neg = [expr("Eaten(food)")]
effect_add = [expr("Eaten(food)")]
effect_rem = [expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), [precond_pos, precond_neg], [effect_add, effect_rem])
"""
def __init__(self, action, precond, effect):
self.name = action.op
self.args = action.args
self.precond_pos = precond[0]
self.precond_neg = precond[1]
self.effect_add = effect[0]
self.effect_rem = effect[1]
def __call__(self, kb, args):
return self.act(kb, args)
def substitute(self, e, args):
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i, _ in enumerate(self.args):
if self.args[i] == x:
new_args[num] = args[i]
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
# check for positive clauses
for clause in self.precond_pos:
if self.substitute(clause, args) not in kb.clauses:
return False
# check for negative clauses
for clause in self.precond_neg:
if self.substitute(clause, args) in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's kb"""
# check if the preconditions are satisfied
if not self.check_precond(kb, args):
raise Exception("Action pre-conditions not satisfied")
# remove negative literals
for clause in self.effect_rem:
kb.retract(self.substitute(clause, args))
# add positive literals
for clause in self.effect_add:
kb.tell(self.substitute(clause, args))
def air_cargo():
init = [expr('At(C1, SFO)'),
expr('At(C2, JFK)'),
expr('At(P1, SFO)'),
expr('At(P2, JFK)'),
expr('Cargo(C1)'),
expr('Cargo(C2)'),
expr('Plane(P1)'),
expr('Plane(P2)'),
expr('Airport(JFK)'),
expr('Airport(SFO)')]
def goal_test(kb):
required = [expr('At(C1 , JFK)'), expr('At(C2 ,SFO)')]
return all([kb.ask(q) is not False for q in required])
# Actions
# Load
precond_pos = [expr("At(c, a)"), expr("At(p, a)"), expr("Cargo(c)"), expr("Plane(p)"),
expr("Airport(a)")]
precond_neg = []
effect_add = [expr("In(c, p)")]
effect_rem = [expr("At(c, a)")]
load = Action(expr("Load(c, p, a)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# Unload
precond_pos = [expr("In(c, p)"), expr("At(p, a)"), expr("Cargo(c)"), expr("Plane(p)"),
expr("Airport(a)")]
precond_neg = []
effect_add = [expr("At(c, a)")]
effect_rem = [expr("In(c, p)")]
unload = Action(expr("Unload(c, p, a)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# Fly
# Used 'f' instead of 'from' because 'from' is a python keyword and expr uses eval() function
precond_pos = [expr("At(p, f)"), expr("Plane(p)"), expr("Airport(f)"), expr("Airport(to)")]
precond_neg = []
effect_add = [expr("At(p, to)")]
effect_rem = [expr("At(p, f)")]
fly = Action(expr("Fly(p, f, to)"), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDDL(init, [load, unload, fly], goal_test)
def spare_tire():
init = [expr('Tire(Flat)'),
expr('Tire(Spare)'),
expr('At(Flat, Axle)'),
expr('At(Spare, Trunk)')]
def goal_test(kb):
required = [expr('At(Spare, Axle)')]
return all(kb.ask(q) is not False for q in required)
# Actions
# Remove
precond_pos = [expr("At(obj, loc)")]
precond_neg = []
effect_add = [expr("At(obj, Ground)")]
effect_rem = [expr("At(obj, loc)")]
remove = Action(expr("Remove(obj, loc)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# PutOn
precond_pos = [expr("Tire(t)"), expr("At(t, Ground)")]
precond_neg = [expr("At(Flat, Axle)")]
effect_add = [expr("At(t, Axle)")]
effect_rem = [expr("At(t, Ground)")]
put_on = Action(expr("PutOn(t, Axle)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# LeaveOvernight
precond_pos = []
precond_neg = []
effect_add = []
effect_rem = [expr("At(Spare, Ground)"), expr("At(Spare, Axle)"), expr("At(Spare, Trunk)"),
expr("At(Flat, Ground)"), expr("At(Flat, Axle)"), expr("At(Flat, Trunk)")]
leave_overnight = Action(expr("LeaveOvernight"), [precond_pos, precond_neg],
[effect_add, effect_rem])
return PDDL(init, [remove, put_on, leave_overnight], goal_test)
def three_block_tower():
init = [expr('On(A, Table)'),
expr('On(B, Table)'),
expr('On(C, A)'),
expr('Block(A)'),
expr('Block(B)'),
expr('Block(C)'),
expr('Clear(B)'),
expr('Clear(C)')]
def goal_test(kb):
required = [expr('On(A, B)'), expr('On(B, C)')]
return all(kb.ask(q) is not False for q in required)
# Actions
# Move
precond_pos = [expr('On(b, x)'), expr('Clear(b)'), expr('Clear(y)'), expr('Block(b)'),
expr('Block(y)')]
precond_neg = []
effect_add = [expr('On(b, y)'), expr('Clear(x)')]
effect_rem = [expr('On(b, x)'), expr('Clear(y)')]
move = Action(expr('Move(b, x, y)'), [precond_pos, precond_neg], [effect_add, effect_rem])
# MoveToTable
precond_pos = [expr('On(b, x)'), expr('Clear(b)'), expr('Block(b)')]
precond_neg = []
effect_add = [expr('On(b, Table)'), expr('Clear(x)')]
effect_rem = [expr('On(b, x)')]
moveToTable = Action(expr('MoveToTable(b, x)'), [precond_pos, precond_neg],
[effect_add, effect_rem])
return PDDL(init, [move, moveToTable], goal_test)
def have_cake_and_eat_cake_too():
init = [expr('Have(Cake)')]
def goal_test(kb):
required = [expr('Have(Cake)'), expr('Eaten(Cake)')]
return all(kb.ask(q) is not False for q in required)
# Actions
# Eat cake
precond_pos = [expr('Have(Cake)')]
precond_neg = []
effect_add = [expr('Eaten(Cake)')]
effect_rem = [expr('Have(Cake)')]
eat_cake = Action(expr('Eat(Cake)'), [precond_pos, precond_neg], [effect_add, effect_rem])
# Bake Cake
precond_pos = []
precond_neg = [expr('Have(Cake)')]
effect_add = [expr('Have(Cake)')]
effect_rem = []
bake_cake = Action(expr('Bake(Cake)'), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDDL(init, [eat_cake, bake_cake], goal_test)
class Level():
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, poskb, negkb):
self.poskb = poskb
# Current state
self.current_state_pos = poskb.clauses
self.current_state_neg = negkb.clauses
# Current action to current state link
self.current_action_links_pos = {}
self.current_action_links_neg = {}
# Current state to action link
self.current_state_links_pos = {}
self.current_state_links_neg = {}
# Current action to next state link
self.next_action_links = {}
# Next state to current action link
self.next_state_links_pos = {}
self.next_state_links_neg = {}
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def find_mutex(self):
# Inconsistent effects
for poseff in self.next_state_links_pos:
negeff = poseff
if negeff in self.next_state_links_neg:
for a in self.next_state_links_pos[poseff]:
for b in self.next_state_links_neg[negeff]:
if set([a, b]) not in self.mutex:
self.mutex.append(set([a, b]))
# Interference
for posprecond in self.current_state_links_pos:
negeff = posprecond
if negeff in self.next_state_links_neg:
for a in self.current_state_links_pos[posprecond]:
for b in self.next_state_links_neg[negeff]:
if set([a, b]) not in self.mutex:
self.mutex.append(set([a, b]))
for negprecond in self.current_state_links_neg:
poseff = negprecond
if poseff in self.next_state_links_pos:
for a in self.next_state_links_pos[poseff]:
for b in self.current_state_links_neg[negprecond]:
if set([a, b]) not in self.mutex:
self.mutex.append(set([a, b]))
# Competing needs
for posprecond in self.current_state_links_pos:
negprecond = posprecond
if negprecond in self.current_state_links_neg:
for a in self.current_state_links_pos[posprecond]:
for b in self.current_state_links_neg[negprecond]:
if set([a, b]) not in self.mutex:
self.mutex.append(set([a, b]))
# Inconsistent support
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append(set([next_state_0[0], next_state_1[0]]))
self.mutex = self.mutex+state_mutex
def build(self, actions, objects):
# Add persistence actions for positive states
for clause in self.current_state_pos:
self.current_action_links_pos[Expr('Persistence', clause)] = [clause]
self.next_action_links[Expr('Persistence', clause)] = [clause]
self.current_state_links_pos[clause] = [Expr('Persistence', clause)]
self.next_state_links_pos[clause] = [Expr('Persistence', clause)]
# Add persistence actions for negative states
for clause in self.current_state_neg:
not_expr = Expr('not'+clause.op, clause.args)
self.current_action_links_neg[Expr('Persistence', not_expr)] = [clause]
self.next_action_links[Expr('Persistence', not_expr)] = [clause]
self.current_state_links_neg[clause] = [Expr('Persistence', not_expr)]
self.next_state_links_neg[clause] = [Expr('Persistence', not_expr)]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
if a.check_precond(self.poskb, arg):
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links_pos[new_action] = []
self.current_action_links_neg[new_action] = []
for clause in a.precond_pos:
new_clause = a.substitute(clause, arg)
self.current_action_links_pos[new_action].append(new_clause)
if new_clause in self.current_state_links_pos:
self.current_state_links_pos[new_clause].append(new_action)
else:
self.current_state_links_pos[new_clause] = [new_action]
for clause in a.precond_neg:
new_clause = a.substitute(clause, arg)
self.current_action_links_neg[new_action].append(new_clause)
if new_clause in self.current_state_links_neg:
self.current_state_links_neg[new_clause].append(new_action)
else:
self.current_state_links_neg[new_clause] = [new_action]
self.next_action_links[new_action] = []
for clause in a.effect_add:
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links_pos:
self.next_state_links_pos[new_clause].append(new_action)
else:
self.next_state_links_pos[new_clause] = [new_action]
for clause in a.effect_rem:
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links_neg:
self.next_state_links_neg[new_clause].append(new_action)
else:
self.next_state_links_neg[new_clause] = [new_action]
def perform_actions(self):
new_kb_pos = FolKB(list(set(self.next_state_links_pos.keys())))
new_kb_neg = FolKB(list(set(self.next_state_links_neg.keys())))
return Level(new_kb_pos, new_kb_neg)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
def __init__(self, pddl, negkb):
self.pddl = pddl
self.levels = [Level(pddl.kb, negkb)]
self.objects = set(arg for clause in pddl.kb.clauses + negkb.clauses for arg in clause.args)
def __call__(self):
self.expand_graph()
def expand_graph(self):
last_level = self.levels[-1]
last_level(self.pddl.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
def __init__(self, pddl, negkb):
self.graph = Graph(pddl, negkb)
self.nogoods = []
self.solution = []
def check_leveloff(self):
first_check = (set(self.graph.levels[-1].current_state_pos) ==
set(self.graph.levels[-2].current_state_pos))
second_check = (set(self.graph.levels[-1].current_state_neg) ==
set(self.graph.levels[-2].current_state_neg))
if first_check and second_check:
return True
def extract_solution(self, goals_pos, goals_neg, index):
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals_pos+goals_neg, index):
self.nogoods.append((level, goals_pos, goals_neg))
return
level = self.graph.levels[index-1]
# Create all combinations of actions that satisfy the goal
actions = []
for goal in goals_pos:
actions.append(level.next_state_links_pos[goal])
for goal in goals_neg:
actions.append(level.next_state_links_neg[goal])
all_actions = list(itertools.product(*actions))
# Filter out the action combinations which contain mutexes
non_mutex_actions = []
for action_tuple in all_actions:
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
# Recursion
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
new_goals_pos = []
new_goals_neg = []
for act in set(action_list):
if act in level.current_action_links_pos:
new_goals_pos = new_goals_pos + level.current_action_links_pos[act]
for act in set(action_list):
if act in level.current_action_links_neg:
new_goals_neg = new_goals_neg + level.current_action_links_neg[act]
if abs(index)+1 == len(self.graph.levels):
return
elif (level, new_goals_pos, new_goals_neg) in self.nogoods:
return
else:
self.extract_solution(new_goals_pos, new_goals_neg, index-1)
# Level-Order multiple solutions
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
def spare_tire_graphplan():
pddl = spare_tire()
negkb = FolKB([expr('At(Flat, Trunk)')])
graphplan = GraphPlan(pddl, negkb)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
# Not sure
goals_pos = [expr('At(Spare, Axle)'), expr('At(Flat, Ground)')]
goals_neg = []
while True:
if (goal_test(graphplan.graph.levels[-1].poskb, goals_pos) and
graphplan.graph.non_mutex_goals(goals_pos+goals_neg, -1)):
solution = graphplan.extract_solution(goals_pos, goals_neg, -1)
if solution:
return solution
graphplan.graph.expand_graph()
if len(graphplan.graph.levels)>=2 and graphplan.check_leveloff():
return None
def double_tennis_problem():
init = [expr('At(A, LeftBaseLine)'),
expr('At(B, RightNet)'),
expr('Approaching(Ball, RightBaseLine)'),
expr('Partner(A, B)'),
expr('Partner(B, A)')]
def goal_test(kb):
required = [expr('Goal(Returned(Ball))'), expr('At(a, RightNet)'), expr('At(a, LeftNet)')]
return all(kb.ask(q) is not False for q in required)
# Actions
# Hit
precond_pos = [expr("Approaching(Ball,loc)"), expr("At(actor,loc)")]
precond_neg = []
effect_add = [expr("Returned(Ball)")]
effect_rem = []
hit = Action(expr("Hit(actor, Ball)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# Go
precond_pos = [expr("At(actor, loc)")]
precond_neg = []
effect_add = [expr("At(actor, to)")]
effect_rem = [expr("At(actor, loc)")]
go = Action(expr("Go(actor, to)"), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDDL(init, [hit, go], goal_test)
class HLA(Action):
"""
Define Actions for the real-world (that may be refined further), and satisfy resource
constraints.
"""
unique_group = 1
def __init__(self, action, precond=[None, None], effect=[None, None], duration=0,
consume={}, use={}):
"""
As opposed to actions, to define HLA, we have added constraints.
duration holds the amount of time required to execute the task
consumes holds a dictionary representing the resources the task consumes
uses holds a dictionary representing the resources the task uses
"""
super().__init__(action, precond, effect)
self.duration = duration
self.consumes = consume
self.uses = use
self.completed = False
# self.priority = -1 # must be assigned in relation to other HLAs
# self.job_group = -1 # must be assigned in relation to other HLAs
def do_action(self, job_order, available_resources, kb, args):
"""
An HLA based version of act - along with knowledge base updation, it handles
resource checks, and ensures the actions are executed in the correct order.
"""
# print(self.name)
if not self.has_usable_resource(available_resources):
raise Exception('Not enough usable resources to execute {}'.format(self.name))
if not self.has_consumable_resource(available_resources):
raise Exception('Not enough consumable resources to execute {}'.format(self.name))
if not self.inorder(job_order):
raise Exception("Can't execute {} - execute prerequisite actions first".
format(self.name))
super().act(kb, args) # update knowledge base
for resource in self.consumes: # remove consumed resources
available_resources[resource] -= self.consumes[resource]
self.completed = True # set the task status to complete
def has_consumable_resource(self, available_resources):
"""
Ensure there are enough consumable resources for this action to execute.
"""
for resource in self.consumes:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.consumes[resource]:
return False
return True
def has_usable_resource(self, available_resources):
"""
Ensure there are enough usable resources for this action to execute.
"""
for resource in self.uses:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.uses[resource]:
return False
return True
def inorder(self, job_order):
"""
Ensure that all the jobs that had to be executed before the current one have been
successfully executed.
"""
for jobs in job_order:
if self in jobs:
for job in jobs:
if job is self:
return True
if not job.completed:
return False
return True
class Problem(PDDL):
"""
Define real-world problems by aggregating resources as numerical quantities instead of
named entities.
This class is identical to PDLL, except that it overloads the act function to handle
resource and ordering conditions imposed by HLA as opposed to Action.
"""
def __init__(self, initial_state, actions, goal_test, jobs=None, resources={}):
super().__init__(initial_state, actions, goal_test)
self.jobs = jobs
self.resources = resources
def act(self, action):
"""
Performs the HLA given as argument.
Note that this is different from the superclass action - where the parameter was an
Expression. For real world problems, an Expr object isn't enough to capture all the
detail required for executing the action - resources, preconditions, etc need to be
checked for too.
"""
args = action.args
list_action = first(a for a in self.actions if a.name == action.name)
if list_action is None:
raise Exception("Action '{}' not found".format(action.name))
list_action.do_action(self.jobs, self.resources, self.kb, args)
def refinements(hla, state, library): # TODO - refinements may be (multiple) HLA themselves ...
"""
state is a Problem, containing the current state kb
library is a dictionary containing details for every possible refinement. eg:
{
"HLA": [
"Go(Home,SFO)",
"Go(Home,SFO)",
"Drive(Home, SFOLongTermParking)",
"Shuttle(SFOLongTermParking, SFO)",
"Taxi(Home, SFO)"
],
"steps": [
["Drive(Home, SFOLongTermParking)", "Shuttle(SFOLongTermParking, SFO)"],
["Taxi(Home, SFO)"],
[], # empty refinements ie primitive action
[],
[]
],
"precond_pos": [
["At(Home), Have(Car)"],
["At(Home)"],
["At(Home)", "Have(Car)"]
["At(SFOLongTermParking)"]
["At(Home)"]
],
"precond_neg": [[],[],[],[],[]],
"effect_pos": [
["At(SFO)"],
["At(SFO)"],
["At(SFOLongTermParking)"],
["At(SFO)"],
["At(SFO)"]
],
"effect_neg": [
["At(Home)"],
["At(Home)"],
["At(Home)"],
["At(SFOLongTermParking)"],
["At(Home)"]
]
}
"""
e = Expr(hla.name, hla.args)
indices = [i for i, x in enumerate(library["HLA"]) if expr(x).op == hla.name]
for i in indices:
action = HLA(expr(library["steps"][i][0]), [ # TODO multiple refinements
[expr(x) for x in library["precond_pos"][i]],
[expr(x) for x in library["precond_neg"][i]]
],
[
[expr(x) for x in library["effect_pos"][i]],
[expr(x) for x in library["effect_neg"][i]]
])
if action.check_precond(state.kb, action.args):
yield action
def hierarchical_search(problem, hierarchy):
"""
[Figure 11.5] 'Hierarchical Search, a Breadth First Search implementation of Hierarchical
Forward Planning Search'
The problem is a real-world prodlem defined by the problem class, and the hierarchy is
a dictionary of HLA - refinements (see refinements generator for details)
"""
act = Node(problem.actions[0])
frontier = FIFOQueue()
frontier.append(act)
while(True):
if not frontier:
return None
plan = frontier.pop()
print(plan.state.name)
hla = plan.state # first_or_null(plan)
prefix = None
if plan.parent:
prefix = plan.parent.state.action # prefix, suffix = subseq(plan.state, hla)
outcome = Problem.result(problem, prefix)
if hla is None:
if outcome.goal_test():
return plan.path()
else:
print("else")
for sequence in Problem.refinements(hla, outcome, hierarchy):
print("...")
frontier.append(Node(plan.state, plan.parent, sequence))
def result(problem, action):
"""The outcome of applying an action to the current problem"""
if action is not None:
problem.act(action)
return problem
else:
return problem
def job_shop_problem():
"""
[figure 11.1] JOB-SHOP-PROBLEM
A job-shop scheduling problem for assembling two cars,
with resource and ordering constraints.
Example:
>>> from planning import *
>>> p = job_shop_problem()
>>> p.goal_test()
False
>>> p.act(p.jobs[1][0])
>>> p.act(p.jobs[1][1])
>>> p.act(p.jobs[1][2])
>>> p.act(p.jobs[0][0])
>>> p.act(p.jobs[0][1])
>>> p.goal_test()
False
>>> p.act(p.jobs[0][2])
>>> p.goal_test()
True
>>>
"""
init = [expr('Car(C1)'),
expr('Car(C2)'),
expr('Wheels(W1)'),
expr('Wheels(W2)'),
expr('Engine(E2)'),
expr('Engine(E2)')]
def goal_test(kb):
# print(kb.clauses)
required = [expr('Has(C1, W1)'), expr('Has(C1, E1)'), expr('Inspected(C1)'),
expr('Has(C2, W2)'), expr('Has(C2, E2)'), expr('Inspected(C2)')]
for q in required:
# print(q)
# print(kb.ask(q))
if kb.ask(q) is False:
return False
return True
resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}
# AddEngine1
precond_pos = []
precond_neg = [expr("Has(C1,E1)")]
effect_add = [expr("Has(C1,E1)")]
effect_rem = []
add_engine1 = HLA(expr("AddEngine1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, use={'EngineHoists': 1})
# AddEngine2
precond_pos = []
precond_neg = [expr("Has(C2,E2)")]
effect_add = [expr("Has(C2,E2)")]
effect_rem = []
add_engine2 = HLA(expr("AddEngine2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=60, use={'EngineHoists': 1})
# AddWheels1
precond_pos = []
precond_neg = [expr("Has(C1,W1)")]
effect_add = [expr("Has(C1,W1)")]
effect_rem = []
add_wheels1 = HLA(expr("AddWheels1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, consume={'LugNuts': 20}, use={'WheelStations': 1})
# AddWheels2
precond_pos = []
precond_neg = [expr("Has(C2,W2)")]
effect_add = [expr("Has(C2,W2)")]
effect_rem = []
add_wheels2 = HLA(expr("AddWheels2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=15, consume={'LugNuts': 20}, use={'WheelStations': 1})
# Inspect1
precond_pos = []
precond_neg = [expr("Inspected(C1)")]
effect_add = [expr("Inspected(C1)")]
effect_rem = []
inspect1 = HLA(expr("Inspect1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})
# Inspect2
precond_pos = []
precond_neg = [expr("Inspected(C2)")]
effect_add = [expr("Inspected(C2)")]
effect_rem = []
inspect2 = HLA(expr("Inspect2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})
job_group1 = [add_engine1, add_wheels1, inspect1]
job_group2 = [add_engine2, add_wheels2, inspect2]
return Problem(init, [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2],
goal_test, [job_group1, job_group2], resources)