-
Notifications
You must be signed in to change notification settings - Fork 27
/
app.py
265 lines (201 loc) · 8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Importing essential libraries and modules
from flask import Flask, render_template, request, Markup
import numpy as np
import pandas as pd
from utils.disease import disease_dic
from utils.fertilizer import fertilizer_dic
import requests
import config
import pickle
import io
import torch
from torchvision import transforms
from PIL import Image
from utils.model import ResNet9
# ==============================================================================================
# -------------------------LOADING THE TRAINED MODELS -----------------------------------------------
# Loading plant disease classification model
disease_classes = ['Apple___Apple_scab',
'Apple___Black_rot',
'Apple___Cedar_apple_rust',
'Apple___healthy',
'Blueberry___healthy',
'Cherry_(including_sour)___Powdery_mildew',
'Cherry_(including_sour)___healthy',
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
'Corn_(maize)___Common_rust_',
'Corn_(maize)___Northern_Leaf_Blight',
'Corn_(maize)___healthy',
'Grape___Black_rot',
'Grape___Esca_(Black_Measles)',
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
'Grape___healthy',
'Orange___Haunglongbing_(Citrus_greening)',
'Peach___Bacterial_spot',
'Peach___healthy',
'Pepper,_bell___Bacterial_spot',
'Pepper,_bell___healthy',
'Potato___Early_blight',
'Potato___Late_blight',
'Potato___healthy',
'Raspberry___healthy',
'Soybean___healthy',
'Squash___Powdery_mildew',
'Strawberry___Leaf_scorch',
'Strawberry___healthy',
'Tomato___Bacterial_spot',
'Tomato___Early_blight',
'Tomato___Late_blight',
'Tomato___Leaf_Mold',
'Tomato___Septoria_leaf_spot',
'Tomato___Spider_mites Two-spotted_spider_mite',
'Tomato___Target_Spot',
'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
'Tomato___Tomato_mosaic_virus',
'Tomato___healthy']
disease_model_path = 'models/plant_disease_model.pth'
disease_model = ResNet9(3, len(disease_classes))
disease_model.load_state_dict(torch.load(
disease_model_path, map_location=torch.device('cpu')))
disease_model.eval()
# Loading crop recommendation model
crop_recommendation_model_path = 'models/RandomForest.pkl'
crop_recommendation_model = pickle.load(
open(crop_recommendation_model_path, 'rb'))
# =========================================================================================
# Custom functions for calculations
def weather_fetch(city_name):
"""
Fetch and returns the temperature and humidity of a city
:params: city_name
:return: temperature, humidity
"""
api_key = config.weather_api_key
base_url = "http://api.openweathermap.org/data/2.5/weather?"
complete_url = base_url + "appid=" + api_key + "&q=" + city_name
response = requests.get(complete_url)
x = response.json()
if x["cod"] != "404":
y = x["main"]
temperature = round((y["temp"] - 273.15), 2)
humidity = y["humidity"]
return temperature, humidity
else:
return None
def predict_image(img, model=disease_model):
"""
Transforms image to tensor and predicts disease label
:params: image
:return: prediction (string)
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
])
image = Image.open(io.BytesIO(img))
img_t = transform(image)
img_u = torch.unsqueeze(img_t, 0)
# Get predictions from model
yb = model(img_u)
# Pick index with highest probability
_, preds = torch.max(yb, dim=1)
prediction = disease_classes[preds[0].item()]
# Retrieve the class label
return prediction
# ===============================================================================================
# ------------------------------------ FLASK APP -------------------------------------------------
app = Flask(__name__)
# render home page
@ app.route('/')
def home():
title = 'Harvestify - Home'
return render_template('index.html', title=title)
# render crop recommendation form page
@ app.route('/crop-recommend')
def crop_recommend():
title = 'Harvestify - Crop Recommendation'
return render_template('crop.html', title=title)
# render fertilizer recommendation form page
@ app.route('/fertilizer')
def fertilizer_recommendation():
title = 'Harvestify - Fertilizer Suggestion'
return render_template('fertilizer.html', title=title)
# render disease prediction input page
# ===============================================================================================
# RENDER PREDICTION PAGES
# render crop recommendation result page
@ app.route('/crop-predict', methods=['POST'])
def crop_prediction():
title = 'Harvestify - Crop Recommendation'
if request.method == 'POST':
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
ph = float(request.form['ph'])
rainfall = float(request.form['rainfall'])
# state = request.form.get("stt")
city = request.form.get("city")
if weather_fetch(city) != None:
temperature, humidity = weather_fetch(city)
data = np.array([[N, P, K, temperature, humidity, ph, rainfall]])
my_prediction = crop_recommendation_model.predict(data)
final_prediction = my_prediction[0]
return render_template('crop-result.html', prediction=final_prediction, title=title)
else:
return render_template('try_again.html', title=title)
# render fertilizer recommendation result page
@ app.route('/fertilizer-predict', methods=['POST'])
def fert_recommend():
title = 'Harvestify - Fertilizer Suggestion'
crop_name = str(request.form['cropname'])
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
# ph = float(request.form['ph'])
df = pd.read_csv('Data/fertilizer.csv')
nr = df[df['Crop'] == crop_name]['N'].iloc[0]
pr = df[df['Crop'] == crop_name]['P'].iloc[0]
kr = df[df['Crop'] == crop_name]['K'].iloc[0]
n = nr - N
p = pr - P
k = kr - K
temp = {abs(n): "N", abs(p): "P", abs(k): "K"}
max_value = temp[max(temp.keys())]
if max_value == "N":
if n < 0:
key = 'NHigh'
else:
key = "Nlow"
elif max_value == "P":
if p < 0:
key = 'PHigh'
else:
key = "Plow"
else:
if k < 0:
key = 'KHigh'
else:
key = "Klow"
response = Markup(str(fertilizer_dic[key]))
return render_template('fertilizer-result.html', recommendation=response, title=title)
# render disease prediction result page
@app.route('/disease-predict', methods=['GET', 'POST'])
def disease_prediction():
title = 'Harvestify - Disease Detection'
if request.method == 'POST':
if 'file' not in request.files:
return redirect(request.url)
file = request.files.get('file')
if not file:
return render_template('disease.html', title=title)
try:
img = file.read()
prediction = predict_image(img)
prediction = Markup(str(disease_dic[prediction]))
return render_template('disease-result.html', prediction=prediction, title=title)
except:
pass
return render_template('disease.html', title=title)
# ===============================================================================================
if __name__ == '__main__':
app.run(debug=False)