forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_gpt2_fp32.cu
239 lines (214 loc) · 10.9 KB
/
test_gpt2_fp32.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#define TESTING
#ifdef BUILD_AMD
#include "train_gpt2_fp32.hip"
#else
#include "train_gpt2_fp32.cu"
#endif
// poor man's tensor checker
int check_tensor(float *a, float *b, int n, const char* label) {
int print_upto = 5;
int ok = 1;
printf("%s\n", label);
for (int i = 0; i < n; i++) {
if (fabsf(a[i] - b[i]) <= 1e-2) {
if (i < print_upto) { printf("OK "); }
} else {
if (i < print_upto) { printf("NOT OK "); }
ok = 0;
}
if (i < print_upto) { printf("%f %f\n", a[i], b[i]); }
}
// print the final result
if (ok) {
printf("TENSOR OK\n");
} else {
printf("TENSOR NOT OK\n");
}
return ok;
}
int main(int argc, char *argv[]) {
// set up the device
int deviceIdx = 0;
cudaCheck(cudaSetDevice(deviceIdx));
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, deviceIdx);
printf("[System]\n");
printf("Device %d: %s\n", deviceIdx, deviceProp.name);
// setup cuBLAS and cuBLASLt
cublasCheck(cublasCreate(&cublas_handle));
// TF32 precision is equivalent to torch.set_float32_matmul_precision('high')
int enable_tf32 = deviceProp.major >= 8 ? 1 : 0;
enable_tf32 = 0; // NOTE: disable TF32 for testing!!!
printf("enable_tf32: %d\n", enable_tf32);
cublas_compute_type = enable_tf32 ? CUBLAS_COMPUTE_32F_FAST_TF32 : CUBLAS_COMPUTE_32F;
cublasMath_t cublas_math_mode = enable_tf32 ? CUBLAS_TF32_TENSOR_OP_MATH : CUBLAS_DEFAULT_MATH;
cublasCheck(cublasSetMathMode(cublas_handle, cublas_math_mode));
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
// int C = model.config.channels;
int V = model.config.vocab_size;
int Vp = model.config.padded_vocab_size;
int maxT = model.config.max_seq_len;
// int L = model.config.num_layers;
// load additional information that we will use for debugging and error checking
FILE *state_file = fopenCheck("gpt2_124M_debug_state.bin", "rb");
int state_header[256];
freadCheck(state_header, sizeof(int), 256, state_file);
if (state_header[0] != 20240327) { printf("Bad magic state file\n"); exit(EXIT_FAILURE); }
if (state_header[1] != 2) {
fprintf(stderr, "Bad version in state file\n");
fprintf(stderr, "---> HINT: try to re-run `python train_gpt2.py`\n");
exit(EXIT_FAILURE);
}
int B = state_header[2]; // batch size, e.g. 4
int T = state_header[3]; // time / sequence length (e.g. 64, up to maxT)
assert(0 <= T && T <= maxT);
printf("[State]\n");
printf("batch_size: %d\n", B);
printf("seq_len: %d\n", T);
ParameterTensors expected_grads; // will be read from file (from PyTorch)
ParameterTensors calculated_grads; // will be calculated by us
float* expected_grads_memory = malloc_and_point_parameters(&expected_grads, model.param_sizes, 0);
float* calculated_grads_memory = malloc_and_point_parameters(&calculated_grads, model.param_sizes, 0);
// inputs and expected outputs, only used for error checking
int* x = (int*)mallocCheck(B * T * sizeof(int));
int* y = (int*)mallocCheck(B * T * sizeof(int));
float* expected_logits = (float*) mallocCheck(B * T * V * sizeof(float));
float* expected_loss = (float*) mallocCheck(1 * sizeof(float));
// read reference information from Python
freadCheck(x, sizeof(int), B*T, state_file);
freadCheck(y, sizeof(int), B*T, state_file);
freadCheck(expected_logits, sizeof(float), B*T*V, state_file);
freadCheck(expected_loss, sizeof(float), 1, state_file);
freadCheck(expected_grads_memory, sizeof(float), model.num_parameters, state_file);
fcloseCheck(state_file);
// overall OK signal for the test
int allok = 1;
// First, do target-free forward pass to validate logits
gpt2_forward(&model, x, NULL, B, T);
// at this point, target should be equal to expected_logits, let's compare
// copy logits to CPU so we can compare them
float* logits_cpu = (float*)mallocCheck(B * T * Vp * sizeof(float));
cudaCheck(cudaMemcpy(logits_cpu, model.acts.output, B * T * Vp * sizeof(float), cudaMemcpyDeviceToHost));
// compare the output logits from the forward pass
// also careful that we don't access and compare the padded columns of logits
int logits_ok = 1;
float max_diff = 0.0f;
for (int bt = 0; bt < B*T; bt++) {
for (int v = 0; v < V; v++) {
int i = bt * Vp + v; // linearized index
if (i < 10) {
printf("%f, %f\n", expected_logits[i], logits_cpu[i]);
}
float diff = fabsf(expected_logits[bt*V + v] - logits_cpu[i]);
max_diff = fmaxf(max_diff, diff);
if (diff >= 1e-2f) {
printf("MISMATCH AT INDEX %d,%d: ", bt, v);
printf("%f %f\n", expected_logits[bt*V + v], logits_cpu[i]);
logits_ok = 0;
bt = B*T; // to break out of both loops
break;
}
}
}
allok = allok && logits_ok;
if(!logits_ok) { printf("NOT "); }
printf("OK (LOGITS)\n");
// let's do 10 training iterations, following the pytorch code
float losses[10];
for (int step = 0; step < 10; step++) {
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
gpt2_forward(&model, x, y, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
if (step == 0) {
// error checking at step 0 for reference activations
free(logits_cpu);
// compare the achieved loss
if (fabsf(model.mean_loss - *expected_loss) >= 1e-2) {
printf("LOSS MISMATCH: %f %f\n", model.mean_loss, *expected_loss);
allok = 0;
} else {
printf("LOSS OK: %f %f\n", model.mean_loss, *expected_loss);
}
// and now compare the gradients on the parameters
// cudaMemcpy(calculated_grads.lnfw, model.grads.lnfw, C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.lnfb, model.grads.lnfb, C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.fcprojw, model.grads.fcprojw, L * C * 4*C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.fcprojb, model.grads.fcprojb, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.fcw, model.grads.fcw, L * 4*C * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.fcb, model.grads.fcb, L * 4*C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.ln2w, model.grads.ln2w, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.ln2b, model.grads.ln2b, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.attprojw, model.grads.attprojw, L * C * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.attprojb, model.grads.attprojb, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.qkvw, model.grads.qkvw, L * 3*C * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.qkvb, model.grads.qkvb, L * 3*C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.ln1w, model.grads.ln1w, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.ln1b, model.grads.ln1b, L * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.wte, model.grads.wte, V * C * sizeof(float), cudaMemcpyDeviceToHost);
// cudaMemcpy(calculated_grads.wpe, model.grads.wpe, maxT * C * sizeof(float), cudaMemcpyDeviceToHost);
// check_tensor(calculated_grads.lnfb, expected_grads.lnfb, C, "lnfb");
// check_tensor(calculated_grads.lnfw, expected_grads.lnfw, C, "lnfw");
// check_tensor(calculated_grads.fcprojw, expected_grads.fcprojw, L * C * 4*C, "fcprojw");
// check_tensor(calculated_grads.fcprojb, expected_grads.fcprojb, L * C, "fcprojb");
// check_tensor(calculated_grads.fcw, expected_grads.fcw, L * 4*C * C, "fcw");
// check_tensor(calculated_grads.fcb, expected_grads.fcb, L * 4*C, "fcb");
// check_tensor(calculated_grads.ln2w, expected_grads.ln2w, L * C, "ln2w");
// check_tensor(calculated_grads.ln2b, expected_grads.ln2b, L * C, "ln2b");
// check_tensor(calculated_grads.attprojw, expected_grads.attprojw, L * C * C, "attprojw");
// check_tensor(calculated_grads.attprojb, expected_grads.attprojb, L * C, "attprojb");
// check_tensor(calculated_grads.qkvw, expected_grads.qkvw, L * 3*C * C, "qkvw");
// check_tensor(calculated_grads.qkvb, expected_grads.qkvb, L * 3*C, "qkvb");
// check_tensor(calculated_grads.ln1w, expected_grads.ln1w, L * C, "ln1w");
// check_tensor(calculated_grads.ln1b, expected_grads.ln1b, L * C, "ln1b");
// check_tensor(calculated_grads.wte, expected_grads.wte, V * C, "wte");
// check_tensor(calculated_grads.wpe, expected_grads.wpe, maxT * C, "wpe");
// compare the gradients ona the parameters all at once
cudaMemcpy(calculated_grads_memory, model.grads_memory, model.num_parameters * sizeof(float), cudaMemcpyDeviceToHost);
check_tensor(calculated_grads_memory, expected_grads_memory, model.num_parameters, "grads");
}
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.01f, step+1);
// print the timing information at the end
printf("step %d: loss %f (took %f ms)\n", step, model.mean_loss, time_elapsed_s * 1000);
losses[step] = model.mean_loss;
}
// expected losses are as follows, from Python
float expected_losses[10] = {
5.270007133483887f,
4.059706687927246f,
3.3751230239868164f,
2.8007826805114746f,
2.315382242202759f,
1.8490285873413086f,
1.3946564197540283f,
0.9991465210914612f,
0.6240804195404053f,
0.37651097774505615f
};
// compare
for (int i = 0; i < 10; i++) {
if (fabsf(losses[i] - expected_losses[i]) >= 1e-2) {
printf("LOSS MISMATCH AT STEP %d: %f %f\n", i, losses[i], expected_losses[i]);
allok = 0;
} else {
printf("loss ok at step %d: %f %f\n", i, losses[i], expected_losses[i]);
}
}
// final approval
printf("overall okay: %d\n", allok);
// free everything
free(x);
free(y);
free(expected_logits);
free(expected_loss);
free(expected_grads_memory);
free(calculated_grads_memory);
gpt2_free(&model);
cublasCheck(cublasDestroy(cublas_handle));
return 0;
}