-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
join_selection.rs
972 lines (882 loc) · 33.6 KB
/
join_selection.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utilizing exact statistics from sources to avoid scanning data
use std::sync::Arc;
use arrow::datatypes::Schema;
use crate::execution::context::SessionConfig;
use crate::logical_expr::JoinType;
use crate::physical_plan::expressions::Column;
use crate::physical_plan::joins::{
utils::{ColumnIndex, JoinFilter, JoinSide},
CrossJoinExec, HashJoinExec, PartitionMode,
};
use crate::physical_plan::projection::ProjectionExec;
use crate::physical_plan::{ExecutionPlan, PhysicalExpr};
use super::optimizer::PhysicalOptimizerRule;
use crate::error::Result;
use crate::physical_plan::rewrite::TreeNodeRewritable;
/// For hash join with the partition mode [PartitionMode::Auto], JoinSelection rule will make
/// a cost based decision to select which PartitionMode mode(Partitioned/CollectLeft) is optimal
/// based on the available statistics that the inputs have.
/// If the statistics information is not available, the partition mode will fall back to [PartitionMode::Partitioned].
///
/// JoinSelection rule will also reorder the build and probe phase of the hash joins
/// based on the avaliable statistics that the inputs have.
/// The rule optimizes the order such that the left (build) side of the join is the smallest.
/// If the statistics information is not available, the order stays the same as the original query.
/// JoinSelection rule will also swap the left and right sides for cross join to keep the left side
/// is the smallest.
#[derive(Default)]
pub struct JoinSelection {}
impl JoinSelection {
#[allow(missing_docs)]
pub fn new() -> Self {
Self {}
}
}
// TODO we need some performance test for Right Semi/Right Join swap to Left Semi/Left Join in case that the right side is smaller but not much smaller.
// TODO In PrestoSQL, the optimizer flips join sides only if one side is much smaller than the other by more than SIZE_DIFFERENCE_THRESHOLD times, by default is is 8 times.
fn should_swap_join_order(left: &dyn ExecutionPlan, right: &dyn ExecutionPlan) -> bool {
// Get the left and right table's total bytes
// If both the left and right tables contain total_byte_size statistics,
// use `total_byte_size` to determine `should_swap_join_order`, else use `num_rows`
let (left_size, right_size) = match (
left.statistics().total_byte_size,
right.statistics().total_byte_size,
) {
(Some(l), Some(r)) => (Some(l), Some(r)),
_ => (left.statistics().num_rows, right.statistics().num_rows),
};
match (left_size, right_size) {
(Some(l), Some(r)) => l > r,
_ => false,
}
}
fn supports_collect_by_size(
plan: &dyn ExecutionPlan,
collection_size_threshold: usize,
) -> bool {
// Currently we do not trust the 0 value from stats, due to stats collection might have bug
// TODO check the logic in datasource::get_statistics_with_limit()
if let Some(size) = plan.statistics().total_byte_size {
size != 0 && size < collection_size_threshold
} else if let Some(row_count) = plan.statistics().num_rows {
row_count != 0 && row_count < collection_size_threshold
} else {
false
}
}
fn supports_swap(join_type: JoinType) -> bool {
match join_type {
JoinType::Inner
| JoinType::Left
| JoinType::Right
| JoinType::Full
| JoinType::LeftSemi
| JoinType::RightSemi
| JoinType::LeftAnti
| JoinType::RightAnti => true,
}
}
fn swap_join_type(join_type: JoinType) -> JoinType {
match join_type {
JoinType::Inner => JoinType::Inner,
JoinType::Full => JoinType::Full,
JoinType::Left => JoinType::Right,
JoinType::Right => JoinType::Left,
JoinType::LeftSemi => JoinType::RightSemi,
JoinType::RightSemi => JoinType::LeftSemi,
JoinType::LeftAnti => JoinType::RightAnti,
JoinType::RightAnti => JoinType::LeftAnti,
}
}
fn swap_hash_join(
hash_join: &HashJoinExec,
partition_mode: PartitionMode,
left: &Arc<dyn ExecutionPlan>,
right: &Arc<dyn ExecutionPlan>,
) -> Result<Arc<dyn ExecutionPlan>> {
let new_join = HashJoinExec::try_new(
Arc::clone(right),
Arc::clone(left),
hash_join
.on()
.iter()
.map(|(l, r)| (r.clone(), l.clone()))
.collect(),
swap_join_filter(hash_join.filter()),
&swap_join_type(*hash_join.join_type()),
partition_mode,
hash_join.null_equals_null(),
)?;
if matches!(
hash_join.join_type(),
JoinType::LeftSemi
| JoinType::RightSemi
| JoinType::LeftAnti
| JoinType::RightAnti
) {
Ok(Arc::new(new_join))
} else {
// TODO avoid adding ProjectionExec again and again, only adding Final Projection
let proj = ProjectionExec::try_new(
swap_reverting_projection(&left.schema(), &right.schema()),
Arc::new(new_join),
)?;
Ok(Arc::new(proj))
}
}
/// When the order of the join is changed by the optimizer,
/// the columns in the output should not be impacted.
/// This helper creates the expressions that will allow to swap
/// back the values from the original left as first columns and
/// those on the right next
fn swap_reverting_projection(
left_schema: &Schema,
right_schema: &Schema,
) -> Vec<(Arc<dyn PhysicalExpr>, String)> {
let right_cols = right_schema.fields().iter().enumerate().map(|(i, f)| {
(
Arc::new(Column::new(f.name(), i)) as Arc<dyn PhysicalExpr>,
f.name().to_owned(),
)
});
let right_len = right_cols.len();
let left_cols = left_schema.fields().iter().enumerate().map(|(i, f)| {
(
Arc::new(Column::new(f.name(), right_len + i)) as Arc<dyn PhysicalExpr>,
f.name().to_owned(),
)
});
left_cols.chain(right_cols).collect()
}
/// Swaps join sides for filter column indices and produces new JoinFilter
fn swap_join_filter(filter: &Option<JoinFilter>) -> Option<JoinFilter> {
match filter {
Some(filter) => {
let column_indices = filter
.column_indices()
.iter()
.map(|idx| {
let side = if matches!(idx.side, JoinSide::Left) {
JoinSide::Right
} else {
JoinSide::Left
};
ColumnIndex {
index: idx.index,
side,
}
})
.collect();
Some(JoinFilter::new(
filter.expression().clone(),
column_indices,
filter.schema().clone(),
))
}
None => None,
}
}
impl PhysicalOptimizerRule for JoinSelection {
fn optimize(
&self,
plan: Arc<dyn ExecutionPlan>,
session_config: &SessionConfig,
) -> Result<Arc<dyn ExecutionPlan>> {
let collect_left_threshold = session_config.hash_join_collect_left_threshold;
plan.transform_up(&|plan| {
if let Some(hash_join) = plan.as_any().downcast_ref::<HashJoinExec>() {
match hash_join.partition_mode() {
PartitionMode::Auto => {
try_collect_left(hash_join, Some(collect_left_threshold))
.unwrap()
.or_else(|| Some(partitioned_hash_join(hash_join).unwrap()))
}
PartitionMode::CollectLeft => try_collect_left(hash_join, None)
.unwrap()
.or_else(|| Some(partitioned_hash_join(hash_join).unwrap())),
PartitionMode::Partitioned => {
let left = hash_join.left();
let right = hash_join.right();
if should_swap_join_order(&**left, &**right)
&& supports_swap(*hash_join.join_type())
{
Some(
swap_hash_join(
hash_join,
PartitionMode::Partitioned,
left,
right,
)
.unwrap(),
)
} else {
None
}
}
}
} else if let Some(cross_join) = plan.as_any().downcast_ref::<CrossJoinExec>()
{
let left = cross_join.left();
let right = cross_join.right();
if should_swap_join_order(&**left, &**right) {
let new_join =
CrossJoinExec::try_new(Arc::clone(right), Arc::clone(left))
.unwrap();
// TODO avoid adding ProjectionExec again and again, only adding Final Projection
let proj = ProjectionExec::try_new(
swap_reverting_projection(&left.schema(), &right.schema()),
Arc::new(new_join),
)
.unwrap();
Some(Arc::new(proj))
} else {
None
}
} else {
None
}
})
}
fn name(&self) -> &str {
"[CBO]join_selection"
}
}
/// Try to create the PartitionMode::CollectLeft HashJoinExec when possible.
/// The method will first consider the current join type and check whether it is applicable to run CollectLeft mode
/// and will try to swap the join if the orignal type is unapplicable to run CollectLeft.
/// When the collect_threshold is provided, the method will also check both the left side and right side sizes
///
/// For [JoinType::Full], it is alway unable to run CollectLeft mode and will return None.
/// For [JoinType::Left] and [JoinType::LeftAnti], can not run CollectLeft mode, should swap join type to [JoinType::Right] and [JoinType::RightAnti]
fn try_collect_left(
hash_join: &HashJoinExec,
collect_threshold: Option<usize>,
) -> Result<Option<Arc<dyn ExecutionPlan>>> {
let left = hash_join.left();
let right = hash_join.right();
let join_type = hash_join.join_type();
let left_can_collect = match join_type {
JoinType::Left | JoinType::Full | JoinType::LeftAnti => false,
JoinType::Inner
| JoinType::LeftSemi
| JoinType::Right
| JoinType::RightSemi
| JoinType::RightAnti => collect_threshold.map_or(true, |threshold| {
supports_collect_by_size(&**left, threshold)
}),
};
let right_can_collect = match join_type {
JoinType::Right | JoinType::Full | JoinType::RightAnti => false,
JoinType::Inner
| JoinType::RightSemi
| JoinType::Left
| JoinType::LeftSemi
| JoinType::LeftAnti => collect_threshold.map_or(true, |threshold| {
supports_collect_by_size(&**right, threshold)
}),
};
match (left_can_collect, right_can_collect) {
(true, true) => {
if should_swap_join_order(&**left, &**right)
&& supports_swap(*hash_join.join_type())
{
Ok(Some(swap_hash_join(
hash_join,
PartitionMode::CollectLeft,
left,
right,
)?))
} else {
Ok(Some(Arc::new(HashJoinExec::try_new(
Arc::clone(left),
Arc::clone(right),
hash_join.on().to_vec(),
hash_join.filter().clone(),
hash_join.join_type(),
PartitionMode::CollectLeft,
hash_join.null_equals_null(),
)?)))
}
}
(true, false) => Ok(Some(Arc::new(HashJoinExec::try_new(
Arc::clone(left),
Arc::clone(right),
hash_join.on().to_vec(),
hash_join.filter().clone(),
hash_join.join_type(),
PartitionMode::CollectLeft,
hash_join.null_equals_null(),
)?))),
(false, true) => {
if supports_swap(*hash_join.join_type()) {
Ok(Some(swap_hash_join(
hash_join,
PartitionMode::CollectLeft,
left,
right,
)?))
} else {
Ok(None)
}
}
(false, false) => Ok(None),
}
}
fn partitioned_hash_join(hash_join: &HashJoinExec) -> Result<Arc<dyn ExecutionPlan>> {
let left = hash_join.left();
let right = hash_join.right();
if should_swap_join_order(&**left, &**right) && supports_swap(*hash_join.join_type())
{
swap_hash_join(hash_join, PartitionMode::Partitioned, left, right)
} else {
Ok(Arc::new(HashJoinExec::try_new(
Arc::clone(left),
Arc::clone(right),
hash_join.on().to_vec(),
hash_join.filter().clone(),
hash_join.join_type(),
PartitionMode::Partitioned,
hash_join.null_equals_null(),
)?))
}
}
#[cfg(test)]
mod tests {
use crate::{
physical_plan::{
displayable, joins::PartitionMode, ColumnStatistics, Statistics,
},
test::exec::StatisticsExec,
};
use super::*;
use std::sync::Arc;
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::ScalarValue;
fn create_big_and_small() -> (Arc<dyn ExecutionPlan>, Arc<dyn ExecutionPlan>) {
let big = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(10),
total_byte_size: Some(100000),
..Default::default()
},
Schema::new(vec![Field::new("big_col", DataType::Int32, false)]),
));
let small = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(100000),
total_byte_size: Some(10),
..Default::default()
},
Schema::new(vec![Field::new("small_col", DataType::Int32, false)]),
));
(big, small)
}
/// Create a column statistics vector for a single column
/// that has the given min/max/distinct_count properties.
///
/// Given min/max will be mapped to a [`ScalarValue`] if
/// they are not `None`.
fn create_column_stats(
min: Option<u64>,
max: Option<u64>,
distinct_count: Option<usize>,
) -> Option<Vec<ColumnStatistics>> {
Some(vec![ColumnStatistics {
distinct_count,
min_value: min.map(|size| ScalarValue::UInt64(Some(size))),
max_value: max.map(|size| ScalarValue::UInt64(Some(size))),
..Default::default()
}])
}
/// Returns three plans with statistics of (min, max, distinct_count)
/// * big 100K rows @ (0, 50k, 50k)
/// * medium 10K rows @ (1k, 5k, 1k)
/// * small 1K rows @ (0, 100k, 1k)
fn create_nested_with_min_max() -> (
Arc<dyn ExecutionPlan>,
Arc<dyn ExecutionPlan>,
Arc<dyn ExecutionPlan>,
) {
let big = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(100_000),
column_statistics: create_column_stats(
Some(0),
Some(50_000),
Some(50_000),
),
..Default::default()
},
Schema::new(vec![Field::new("big_col", DataType::Int32, false)]),
));
let medium = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(10_000),
column_statistics: create_column_stats(
Some(1000),
Some(5000),
Some(1000),
),
..Default::default()
},
Schema::new(vec![Field::new("medium_col", DataType::Int32, false)]),
));
let small = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(1000),
column_statistics: create_column_stats(
Some(0),
Some(100_000),
Some(1000),
),
..Default::default()
},
Schema::new(vec![Field::new("small_col", DataType::Int32, false)]),
));
(big, medium, small)
}
#[tokio::test]
async fn test_join_with_swap() {
let (big, small) = create_big_and_small();
let join = HashJoinExec::try_new(
Arc::clone(&big),
Arc::clone(&small),
vec![(
Column::new_with_schema("big_col", &big.schema()).unwrap(),
Column::new_with_schema("small_col", &small.schema()).unwrap(),
)],
None,
&JoinType::Left,
PartitionMode::CollectLeft,
&false,
)
.unwrap();
let optimized_join = JoinSelection::new()
.optimize(Arc::new(join), &SessionConfig::new())
.unwrap();
let swapping_projection = optimized_join
.as_any()
.downcast_ref::<ProjectionExec>()
.expect("A proj is required to swap columns back to their original order");
assert_eq!(swapping_projection.expr().len(), 2);
let (col, name) = &swapping_projection.expr()[0];
assert_eq!(name, "big_col");
assert_col_expr(col, "big_col", 1);
let (col, name) = &swapping_projection.expr()[1];
assert_eq!(name, "small_col");
assert_col_expr(col, "small_col", 0);
let swapped_join = swapping_projection
.input()
.as_any()
.downcast_ref::<HashJoinExec>()
.expect("The type of the plan should not be changed");
assert_eq!(swapped_join.left().statistics().total_byte_size, Some(10));
assert_eq!(
swapped_join.right().statistics().total_byte_size,
Some(100000)
);
}
#[tokio::test]
async fn test_left_join_with_swap() {
let (big, small) = create_big_and_small();
// Left out join should alway swap when the mode is PartitionMode::CollectLeft, even left side is small and right side is large
let join = HashJoinExec::try_new(
Arc::clone(&small),
Arc::clone(&big),
vec![(
Column::new_with_schema("small_col", &small.schema()).unwrap(),
Column::new_with_schema("big_col", &big.schema()).unwrap(),
)],
None,
&JoinType::Left,
PartitionMode::CollectLeft,
&false,
)
.unwrap();
let optimized_join = JoinSelection::new()
.optimize(Arc::new(join), &SessionConfig::new())
.unwrap();
let swapping_projection = optimized_join
.as_any()
.downcast_ref::<ProjectionExec>()
.expect("A proj is required to swap columns back to their original order");
assert_eq!(swapping_projection.expr().len(), 2);
println!("swapping_projection {:?}", swapping_projection);
let (col, name) = &swapping_projection.expr()[0];
assert_eq!(name, "small_col");
assert_col_expr(col, "small_col", 1);
let (col, name) = &swapping_projection.expr()[1];
assert_eq!(name, "big_col");
assert_col_expr(col, "big_col", 0);
let swapped_join = swapping_projection
.input()
.as_any()
.downcast_ref::<HashJoinExec>()
.expect("The type of the plan should not be changed");
assert_eq!(
swapped_join.left().statistics().total_byte_size,
Some(100000)
);
assert_eq!(swapped_join.right().statistics().total_byte_size, Some(10));
}
#[tokio::test]
async fn test_join_with_swap_semi() {
let join_types = [JoinType::LeftSemi, JoinType::LeftAnti];
for join_type in join_types {
let (big, small) = create_big_and_small();
let join = HashJoinExec::try_new(
Arc::clone(&big),
Arc::clone(&small),
vec![(
Column::new_with_schema("big_col", &big.schema()).unwrap(),
Column::new_with_schema("small_col", &small.schema()).unwrap(),
)],
None,
&join_type,
PartitionMode::Partitioned,
&false,
)
.unwrap();
let original_schema = join.schema();
let optimized_join = JoinSelection::new()
.optimize(Arc::new(join), &SessionConfig::new())
.unwrap();
let swapped_join = optimized_join
.as_any()
.downcast_ref::<HashJoinExec>()
.expect(
"A proj is not required to swap columns back to their original order",
);
assert_eq!(swapped_join.schema().fields().len(), 1);
assert_eq!(swapped_join.left().statistics().total_byte_size, Some(10));
assert_eq!(
swapped_join.right().statistics().total_byte_size,
Some(100000)
);
assert_eq!(original_schema, swapped_join.schema());
}
}
/// Compare the input plan with the plan after running the probe order optimizer.
macro_rules! assert_optimized {
($EXPECTED_LINES: expr, $PLAN: expr) => {
let expected_lines =
$EXPECTED_LINES.iter().map(|s| *s).collect::<Vec<&str>>();
let optimized = JoinSelection::new()
.optimize(Arc::new($PLAN), &SessionConfig::new())
.unwrap();
let plan = displayable(optimized.as_ref()).indent().to_string();
let actual_lines = plan.split("\n").collect::<Vec<&str>>();
assert_eq!(
&expected_lines, &actual_lines,
"\n\nexpected:\n\n{:#?}\nactual:\n\n{:#?}\n\n",
expected_lines, actual_lines
);
};
}
#[tokio::test]
async fn test_nested_join_swap() {
let (big, medium, small) = create_nested_with_min_max();
// Form the inner join: big JOIN small
let child_join = HashJoinExec::try_new(
Arc::clone(&big),
Arc::clone(&small),
vec![(
Column::new_with_schema("big_col", &big.schema()).unwrap(),
Column::new_with_schema("small_col", &small.schema()).unwrap(),
)],
None,
&JoinType::Inner,
PartitionMode::CollectLeft,
&false,
)
.unwrap();
let child_schema = child_join.schema();
// Form join tree `medium LEFT JOIN (big JOIN small)`
let join = HashJoinExec::try_new(
Arc::clone(&medium),
Arc::new(child_join),
vec![(
Column::new_with_schema("medium_col", &medium.schema()).unwrap(),
Column::new_with_schema("small_col", &child_schema).unwrap(),
)],
None,
&JoinType::Left,
PartitionMode::CollectLeft,
&false,
)
.unwrap();
// Hash join uses the left side to build the hash table, and right side to probe it. We want
// to keep left as small as possible, so if we can estimate (with a reasonable margin of error)
// that the left side is smaller than the right side, we should swap the sides.
//
// The first hash join's left is 'small' table (with 1000 rows), and the second hash join's
// left is the F(small IJ big) which has an estimated cardinality of 2000 rows (vs medium which
// has an exact cardinality of 10_000 rows).
let expected = [
"ProjectionExec: expr=[medium_col@2 as medium_col, big_col@0 as big_col, small_col@1 as small_col]",
" HashJoinExec: mode=CollectLeft, join_type=Right, on=[(Column { name: \"small_col\", index: 1 }, Column { name: \"medium_col\", index: 0 })]",
" ProjectionExec: expr=[big_col@1 as big_col, small_col@0 as small_col]",
" HashJoinExec: mode=CollectLeft, join_type=Inner, on=[(Column { name: \"small_col\", index: 0 }, Column { name: \"big_col\", index: 0 })]",
" StatisticsExec: col_count=1, row_count=Some(1000)",
" StatisticsExec: col_count=1, row_count=Some(100000)",
" StatisticsExec: col_count=1, row_count=Some(10000)",
""
];
assert_optimized!(expected, join);
}
#[tokio::test]
async fn test_join_no_swap() {
let (big, small) = create_big_and_small();
let join = HashJoinExec::try_new(
Arc::clone(&small),
Arc::clone(&big),
vec![(
Column::new_with_schema("small_col", &small.schema()).unwrap(),
Column::new_with_schema("big_col", &big.schema()).unwrap(),
)],
None,
&JoinType::Inner,
PartitionMode::CollectLeft,
&false,
)
.unwrap();
let optimized_join = JoinSelection::new()
.optimize(Arc::new(join), &SessionConfig::new())
.unwrap();
let swapped_join = optimized_join
.as_any()
.downcast_ref::<HashJoinExec>()
.expect("The type of the plan should not be changed");
assert_eq!(swapped_join.left().statistics().total_byte_size, Some(10));
assert_eq!(
swapped_join.right().statistics().total_byte_size,
Some(100000)
);
}
#[tokio::test]
async fn test_swap_reverting_projection() {
let left_schema = Schema::new(vec![
Field::new("a", DataType::Int32, false),
Field::new("b", DataType::Int32, false),
]);
let right_schema = Schema::new(vec![Field::new("c", DataType::Int32, false)]);
let proj = swap_reverting_projection(&left_schema, &right_schema);
assert_eq!(proj.len(), 3);
let (col, name) = &proj[0];
assert_eq!(name, "a");
assert_col_expr(col, "a", 1);
let (col, name) = &proj[1];
assert_eq!(name, "b");
assert_col_expr(col, "b", 2);
let (col, name) = &proj[2];
assert_eq!(name, "c");
assert_col_expr(col, "c", 0);
}
fn assert_col_expr(expr: &Arc<dyn PhysicalExpr>, name: &str, index: usize) {
let col = expr
.as_any()
.downcast_ref::<Column>()
.expect("Projection items should be Column expression");
assert_eq!(col.name(), name);
assert_eq!(col.index(), index);
}
#[tokio::test]
async fn test_join_selection_collect_left() {
let big = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(10000000),
total_byte_size: Some(10000000),
..Default::default()
},
Schema::new(vec![Field::new("big_col", DataType::Int32, false)]),
));
let small = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(10),
total_byte_size: Some(10),
..Default::default()
},
Schema::new(vec![Field::new("small_col", DataType::Int32, false)]),
));
let empty = Arc::new(StatisticsExec::new(
Statistics {
num_rows: None,
total_byte_size: None,
..Default::default()
},
Schema::new(vec![Field::new("empty_col", DataType::Int32, false)]),
));
let join_on = vec![(
Column::new_with_schema("small_col", &small.schema()).unwrap(),
Column::new_with_schema("big_col", &big.schema()).unwrap(),
)];
check_join_partition_mode(
small.clone(),
big.clone(),
join_on,
false,
PartitionMode::CollectLeft,
);
let join_on = vec![(
Column::new_with_schema("big_col", &big.schema()).unwrap(),
Column::new_with_schema("small_col", &small.schema()).unwrap(),
)];
check_join_partition_mode(
big,
small.clone(),
join_on,
true,
PartitionMode::CollectLeft,
);
let join_on = vec![(
Column::new_with_schema("small_col", &small.schema()).unwrap(),
Column::new_with_schema("empty_col", &empty.schema()).unwrap(),
)];
check_join_partition_mode(
small.clone(),
empty.clone(),
join_on,
false,
PartitionMode::CollectLeft,
);
let join_on = vec![(
Column::new_with_schema("empty_col", &empty.schema()).unwrap(),
Column::new_with_schema("small_col", &small.schema()).unwrap(),
)];
check_join_partition_mode(
empty,
small,
join_on,
true,
PartitionMode::CollectLeft,
);
}
#[tokio::test]
async fn test_join_selection_partitioned() {
let big1 = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(10000000),
total_byte_size: Some(10000000),
..Default::default()
},
Schema::new(vec![Field::new("big_col1", DataType::Int32, false)]),
));
let big2 = Arc::new(StatisticsExec::new(
Statistics {
num_rows: Some(20000000),
total_byte_size: Some(20000000),
..Default::default()
},
Schema::new(vec![Field::new("big_col2", DataType::Int32, false)]),
));
let empty = Arc::new(StatisticsExec::new(
Statistics {
num_rows: None,
total_byte_size: None,
..Default::default()
},
Schema::new(vec![Field::new("empty_col", DataType::Int32, false)]),
));
let join_on = vec![(
Column::new_with_schema("big_col1", &big1.schema()).unwrap(),
Column::new_with_schema("big_col2", &big2.schema()).unwrap(),
)];
check_join_partition_mode(
big1.clone(),
big2.clone(),
join_on,
false,
PartitionMode::Partitioned,
);
let join_on = vec![(
Column::new_with_schema("big_col2", &big2.schema()).unwrap(),
Column::new_with_schema("big_col1", &big1.schema()).unwrap(),
)];
check_join_partition_mode(
big2,
big1.clone(),
join_on,
true,
PartitionMode::Partitioned,
);
let join_on = vec![(
Column::new_with_schema("empty_col", &empty.schema()).unwrap(),
Column::new_with_schema("big_col1", &big1.schema()).unwrap(),
)];
check_join_partition_mode(
empty.clone(),
big1.clone(),
join_on,
false,
PartitionMode::Partitioned,
);
let join_on = vec![(
Column::new_with_schema("big_col1", &big1.schema()).unwrap(),
Column::new_with_schema("empty_col", &empty.schema()).unwrap(),
)];
check_join_partition_mode(
big1,
empty,
join_on,
false,
PartitionMode::Partitioned,
);
}
fn check_join_partition_mode(
left: Arc<StatisticsExec>,
right: Arc<StatisticsExec>,
on: Vec<(Column, Column)>,
is_swapped: bool,
expected_mode: PartitionMode,
) {
let join = HashJoinExec::try_new(
left,
right,
on,
None,
&JoinType::Inner,
PartitionMode::Auto,
&false,
)
.unwrap();
let optimized_join = JoinSelection::new()
.optimize(Arc::new(join), &SessionConfig::new())
.unwrap();
if !is_swapped {
let swapped_join = optimized_join
.as_any()
.downcast_ref::<HashJoinExec>()
.expect("The type of the plan should not be changed");
assert_eq!(*swapped_join.partition_mode(), expected_mode);
} else {
let swapping_projection = optimized_join
.as_any()
.downcast_ref::<ProjectionExec>()
.expect(
"A proj is required to swap columns back to their original order",
);
let swapped_join = swapping_projection
.input()
.as_any()
.downcast_ref::<HashJoinExec>()
.expect("The type of the plan should not be changed");
assert_eq!(*swapped_join.partition_mode(), expected_mode);
}
}
}