
How Arroyo Tricks
DataFusion Into

Stream Processing

Data Council Austin / March 25, 2024

Jackson Newhouse
co-founder, Arroyo

What is Arroyo?

● A new(ish) Rust-based stream processing engine

● Apache 2.0/MIT Dual Licensed

● Read from sources and write to sinks (Kafka, S3, Webhooks, Redis…)

● Supports stateful computations (Event Windows, Joins, Aggregates)

● Uses Chandy–Lamport algorithm to take frequent, asynchronous checkpoints

● SQL frontend provided by DataFusion, extended for streaming semantics

● Support for Rust UDFs using RecordBatches and dynamic linking

https://github.com/ArroyoSystems/arroyo

What We Changed/Extended For DataFusion

● Custom CREATE TABLE
● Window-Based Synthetic UDFs
● Inserting event-time semantics
● LogicalPlan Rewriting
● Swappable RecordBatch Inputs
● Changes to ExecutionPlans
● Checkpointing With DataFusion
● Rust UDFs via Dynamic Linking + Arrow Arrays

Custom CREATE TABLE Statements

CREATE TABLE impulse_source (
 timestamp TIMESTAMP,
 counter BIGINT UNSIGNED NOT NULL,
 subtask_index BIGINT UNSIGNED NOT NULL
) WITH (
 connector = 'kafka',
 topic = 'impulse',
 format = 'json',
 type = 'source',
 bootstrap_servers = 'localhost:9092',
 event_time_field = 'timestamp');

Window-based Synthetic UDFs

Add window UDFs that will be converted into custom operators

tumble(interval ‘1 second) as window
hop(interval ‘1 minute’, interval ‘1 hour) as window
session(interval ‘5 minute’) as window

Inserting event-time semantics

Arroyo tracks progress through event-time, so Arroyo operators need
to be modified to pass through event-time when they emit data.

After much trial and error settled on adding a _timestamp field
throughout the LogicalPlan as part of ArroyoRewriter.

Logical Plan Rewriter

Rewrite all SQL plans that require custom behavior, e.g. LogicalPlan::Join,
LogicalPlan::Aggregate, LogicalPlan::TableScan, LogicalPlan::WindowFunction.

Rewrites produce a LogicalPlan::Extension(extension) where the extension also
implements ArroyoExtension:
pub(crate) trait ArroyoExtension {

 fn node_name(&self) -> Option<NamedNode>;

 fn plan_node(&self, planner: &Planner, index: usize,
 input_schemas: Vec<ArroyoSchemaRef>) -> Result<Node>;

 fn output_schema(&self) -> ArroyoSchema;

}

Swappable RecordBatch Inputs

Use interior mutability so that each execute() call gets its own input.

Depending on the use case a few different structs are used

Arc<RwLock<Vec<RecordBatch>>>

Arc<RwLock<Option<RecordBatch>>>

Arc<RwLock<Option<UnboundedReceiver<RecordBatch>>>>

Changes To ExecutionPlans

Arroyo needs to invoke execution plans cheaply, often on single RecordBatches.

Forked DataFusion so two calls to execute() run independently. Already true of
most operators, just needed to remove some OnceAsync from Join
implementations.

Add a reset() method to clear metrics on operators. Without this Arroyo was
quickly OOM-killed.

https://github.com/ArroyoSystems/arrow-datafusion/tree/reset_execs_36

Checkpointing Stateful Executions

Arroyo needs to be able to restore from a sudden disruption. Checkpoints are
also used to rescale pipelines.

Two main approaches for stateful operators

● Checkpoint Inputs: Write data to S3 before computing against it. Easy, but
potentially inefficient.

● Flush to intermediate data on checkpoint: Used by aggregates, makes use of
the two phase aggregation capabilities of DataFusion

User Rust UDFs via Dynamic Linking

#[derive(WrapperApi)]

struct UdfDylibInterface {

 run: unsafe extern "C" fn(

 args_ptr: *mut FfiArraySchemaPair,

 args_len: usize,

 args_capacity: usize,

) -> FfiArraySchemaPair,

}

Arroyo’s Wishlist for DataFusion

● More flexible CREATE TABLE Statements
● Pluggable Metrics processing, including no-op processing
● Partial -> Partial AggregateExec Mode
● Better struct and union support
● Factory-style ExecutionPlans
● Fully Retractable Aggregate State
● Support for watermark-based flushing
● Support for checkpointing

EASY/SHOULD HAPPEN-MEDIUM/SOME COMPEXITY-HARD/A BAD IDEA?

Questions?
Also, come to Micah’s talk on Thursday, at 1:30:

Why Streaming SQL? The Semantics and Challenges of
Applying SQL to Unbounded Data

jackson@arroyo.dev

@jacksonrnewhouse (github)

linkedin.com/in/jackson-newhouse

https://www.datacouncil.ai/talks24/why-streaming-sql-the-semantics-and-challenges-of-applying-sql-to-unbounded-data
https://www.datacouncil.ai/talks24/why-streaming-sql-the-semantics-and-challenges-of-applying-sql-to-unbounded-data
mailto:jackson@arroyo.dev

