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The Problem

Spark isn’t scaling well and costs
 too much time and money
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• Spark is an amazing piece of technology with a few issues:
− Random failures
− OOM (code 137)
− Disk full (code 100)
− More flags than a political event
− Issue root causes are often quite hard to diagnose
− Very easy to generate millions of files
− Performance isn’t optimal and tuning can be a challenge

• Skewed data can result in very long run times
− A lot of data comes in the very last day of the year for example

• Performance and costs are trending in the wrong direction

• Tests are critical to success
− They are only good for correctness of the logic though

• Large new features that impact performance can be very expensive to test

What’s the concern with Spark?



DataFusion

Is building your own query engine
the solution?
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• Would the improved performance be enough?

• Is the workload partitionable and vertically scalable? 

• Is the required SQL functionality available?

• Is the dataframe API complete (and lazy)?

• Has udf’s?

• Are the joins small enough to work in memory?

• Does the organization have the resources and skills to migrate?
− … and maintain?

For my project the answer was yes.

Is DataFusion a viable alternative?



POC

Rewrite it in Rust
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• Project ingests data from parquet files on S3, applies numerous transformations 
on it, saves it back out to S3 for further processing

• Multi-stage (prepare/ingest/snapshot) with different execution modes

• Ingest stage is being rewritten into Rust backed by DataFusion
− Responsible for most transformations (and execution time)
− Joins are against small reference tables
− Easily partitionable

• Ingest stage relies on a Scala library that handles most of the transformations
− Transformations are defined in json/yaml files and applied in file order
− Transformations include conditional if/then/otherwise, rename, Spark expressions, type mapping, 

dictionary replace (with a variety of conditions such as if exists/not exists, regex, etc) and many 
more

− More advanced transformations are handled in Scala and udf’s

What is being rewritten?
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Yaml example
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• Started initial investigation Dec 2023

• Started with migrating the Scala/Spark transformation library 

• First started with Polars 
− needed lazy support which was (is?) incomplete
− Needed more functions then were implemented

• Switched to DataFusion 
− First verified I could migrate Spark expressions and udf’s

• Submitted PR’s for a variety of missing functions
− to_timestamp with formats
− to_date with formats
− make_date
− upper/lower bug fix for non-ascii
− regexp_like
− to_char

How is the POC going?
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• Initial POC of DataFusion-based library completed in late January

• Started rewrite of Spark ingest phase early February
− First complete build finished beginning of March 
− Stage migration took the majority of time
− Spark UDF -> DataFusion UDF was a non-trivial exercise
− 4k loc

• Performance is exceptional
− 15% of the cost, 7.5x faster 

How is the POC going?
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■ Write/migrate tests (~10k loc)
■ Update persistence code to use iceberg tables
■ Handle deletes
■ Cleanup/refactor code
■ Update surrounding stages to work with new DataFusion ingestion stage
■ Use learnings to help other internal teams with performance critical code

■ Spark -> DataFusion
■ Pandas
■ Wasm

■ Continue contributing to DataFusion

Next Steps



Lessons Learnt
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• The Rust learning curve is real for programmers coming from a higher-level 
language background
− Or maybe it’s just me :D

• Programming paradigms from other languages do not always translate

• Scaling up is often a viable alternative to scaling out

• Working on an open-source project can be quite fulfilling

• It takes a lot longer to rewrite a project into a completely new language than I 
imagined 

• DataFusion is happily more mature than I expected it to be

• Full test runs are (unfortunately) a great time to walk the dog

Lessons Learnt



Thank you

Thank You


