This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
sequence_reverse-inl.h
306 lines (262 loc) · 11 KB
/
sequence_reverse-inl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* \file sequence_reverse-inl.h
* \brief
* \author Sebastian Bodenstien
* \author Marek Kolodziej
*/
#ifndef MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_
#define MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "./mshadow_op.h"
#include "./mxnet_op.h"
#include "./operator_common.h"
#include "./sequence_op_common.h"
namespace mxnet {
namespace op {
namespace seq_reverse {
enum SequenceReverseOpInputs { kData, kSequenceLength };
enum SequenceReverseOpOutputs { kOut };
} // namespace seq_reverse
struct SequenceReverseParam : public dmlc::Parameter<SequenceReverseParam> {
bool use_sequence_length;
int axis;
DMLC_DECLARE_PARAMETER(SequenceReverseParam) {
DMLC_DECLARE_FIELD(use_sequence_length)
.set_default(false)
.describe(
"If set to true, this layer takes in an extra input parameter "
"`sequence_length` "
"to specify variable length sequence");
DMLC_DECLARE_FIELD(axis).set_default(0).describe(
"The sequence axis. Only 0 is currently supported.");
}
};
template <OpReqType req>
struct ReverseKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(const index_t i,
DType* const out_data,
const DType* const in_data,
const index_t max_seq_len,
const index_t batch_size,
const index_t other_dim,
const index_t numel,
const IType* const indices) {
const index_t batch = i / (max_seq_len * other_dim);
const index_t id = (i / other_dim) % max_seq_len;
const index_t j = i % other_dim;
const index_t num_seq = indices ? static_cast<index_t>(indices[batch]) : max_seq_len;
const index_t padded_periods = max_seq_len - num_seq;
// padded part
if (padded_periods > 0 && id < padded_periods) {
const index_t padded_in_offset = (id + num_seq) * batch_size * other_dim + batch * other_dim;
KERNEL_ASSIGN(out_data[padded_in_offset + j], req, in_data[padded_in_offset + j]);
}
// unpadded part
if (id < num_seq) {
const index_t in_offset = id * batch_size * other_dim + batch * other_dim;
const index_t out_offset =
numel - (id + 1 + padded_periods) * batch_size * other_dim + batch * other_dim;
KERNEL_ASSIGN(out_data[out_offset + j], req, in_data[in_offset + j]);
}
}
};
template <typename xpu, typename DType, typename IType>
class SequenceReverseOp : public Operator {
public:
explicit SequenceReverseOp(SequenceReverseParam p) {
this->param_ = p;
}
void sequence_reverse(const mshadow::Tensor<xpu, 3, DType>& data,
const mshadow::Tensor<xpu, 3, DType>& out,
const OpReqType req,
const IType* const indices,
mshadow::Stream<xpu>* const s) {
using namespace mshadow;
using namespace mshadow::expr;
const index_t max_seq_len = data.size(0);
const index_t batch_size = data.size(1);
const index_t other_dim = data.size(2);
const index_t tensor_numel = data.shape_.Size();
MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
mxnet_op::Kernel<ReverseKernel<req_type>, xpu>::Launch(s,
max_seq_len * batch_size * other_dim,
out.dptr_,
data.dptr_,
max_seq_len,
batch_size,
other_dim,
tensor_numel,
indices);
});
}
virtual void Forward(const OpContext& ctx,
const std::vector<TBlob>& in_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& out_data,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
CHECK_EQ(out_data.size(), 1U);
Stream<xpu>* const s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto max_seq_len = in_data[seq_reverse::kData].size(0);
auto n = in_data[seq_reverse::kData].size(1);
auto total_size = in_data[seq_reverse::kData].Size();
if (total_size == 0) {
return; // noop if any input dimension is zero-sized, out_data is of a right shape
}
auto rest_dim = static_cast<int>(total_size / n / max_seq_len);
Shape<3> s3 = Shape3(max_seq_len, n, rest_dim);
Tensor<xpu, 3, DType> data = in_data[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> out = out_data[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s);
const IType* const indices =
param_.use_sequence_length ? in_data[seq_reverse::kSequenceLength].dptr<IType>() : nullptr;
sequence_reverse(data, out, req[seq_reverse::kOut], indices, s);
}
virtual void Backward(const OpContext& ctx,
const std::vector<TBlob>& out_grad,
const std::vector<TBlob>& in_data,
const std::vector<TBlob>& out_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& in_grad,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
Stream<xpu>* s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto max_seq_len = in_grad[seq_reverse::kData].size(0);
auto n = in_grad[seq_reverse::kData].size(1);
auto total_size = in_grad[seq_reverse::kData].Size();
auto rest_dim = static_cast<int>(total_size / n / max_seq_len);
Shape<3> s3 = Shape3(max_seq_len, n, rest_dim);
Tensor<xpu, 3, DType> data_grad =
in_grad[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> output_grad =
out_grad[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s);
const IType* const indices =
param_.use_sequence_length ? in_data[seq_reverse::kSequenceLength].dptr<IType>() : nullptr;
sequence_reverse(output_grad, data_grad, req[seq_reverse::kData], indices, s);
}
private:
SequenceReverseParam param_;
}; // class SequenceReverseOp
template <typename xpu>
Operator* CreateOp(SequenceReverseParam param, int dtype, int itype);
#if DMLC_USE_CXX11
class SequenceReverseProp : public OperatorProperty {
public:
int NumVisibleOutputs() const override {
return 1;
}
int NumOutputs() const override {
return 1;
}
std::vector<std::string> ListArguments() const override {
if (param_.use_sequence_length)
return {"data", "sequence_length"};
else
return {"data"};
}
std::vector<std::string> ListOutputs() const override {
return {"output"};
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape,
mxnet::ShapeVector* aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U)
<< "Input:[data, sequence_length]";
CHECK_EQ(param_.axis, 0) << "Current implementation expects axis to be 0.";
const mxnet::TShape& dshape = (*in_shape)[seq_reverse::kData];
CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater.";
// seq length vector is same as batch size
if (param_.use_sequence_length)
SHAPE_ASSIGN_CHECK(*in_shape, seq_reverse::kSequenceLength, Shape1(dshape[1]));
const mxnet::TShape& oshape = dshape;
out_shape->clear();
out_shape->push_back(oshape);
return true;
}
bool InferType(std::vector<int>* in_type,
std::vector<int>* out_type,
std::vector<int>* aux_type) const override {
CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new SequenceReverseProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "SequenceReverse";
}
std::vector<int> DeclareBackwardDependency(const std::vector<int>& out_grad,
const std::vector<int>& in_data,
const std::vector<int>& out_data) const override {
if (param_.use_sequence_length)
return {out_grad[seq_reverse::kOut], in_data[seq_reverse::kSequenceLength]};
else
return {out_grad[seq_reverse::kOut]};
}
std::vector<ResourceRequest> BackwardResource(const mxnet::ShapeVector& in_shape) const override {
return {ResourceRequest::kTempSpace};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return nullptr;
}
Operator* CreateOperatorEx(Context ctx,
mxnet::ShapeVector* in_shape,
std::vector<int>* in_type) const override;
private:
SequenceReverseParam param_;
}; // class SequenceReverseProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_