Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hexagon] Async DMA pipelining test suite #13005

Merged
merged 4 commits into from
Oct 17, 2022
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
336 changes: 336 additions & 0 deletions tests/python/contrib/test_hexagon/test_async_dma_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,336 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

""" Test different strategies for loading data into vtcm before running HVX workloads. """

import numpy as np
import tvm

from tvm.script import tir as T
from numpy.random import default_rng


def conv_approximation(size_a, size_w):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [size_a, 128], dtype="uint8", align=128)
W = T.match_buffer(b, [size_w, 128], dtype="uint8", align=128)
C = T.match_buffer(c, [size_a, 32], dtype="int32", align=128)
for n, i in T.grid(size_a, size_w):
with T.block("C"):
vn, vi = T.axis.remap("SR", [n, i])
T.reads(A[vn, 0:128], W[vi, 0:128], C[vn, 0:32])
T.writes(C[vn, 0:32])
with T.init():
for x in T.serial(32):
C[vn, x] = 0
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.acc.128B"),
T.uint32(3),
C[vn, T.ramp(0, 1, 32)],
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(W[vi, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int32x32",
)
T.evaluate(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You might add a comment here that this is necessary only for purposes of getting accurate timings. That is, we want to flush all async DMAs before we stop the clock to check perf.

Copy link
Contributor Author

@nverke nverke Oct 10, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good idea. Added ✅

T.tvm_call_packed(
"device_api.hexagon.dma_wait",
0, # QueueId
0, # Wait for 0 in flight
dtype="int32",
)
)

return tvm.tir.Schedule(operator)


def evaluate(hexagon_session, sch, a, b, size_a, expected_output, use_async_copy=0):
target_hexagon = tvm.target.hexagon("v68", link_params=True)
with tvm.transform.PassContext(config={"tir.use_async_copy": use_async_copy}):
func_tir = tvm.build(
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon)
)
module = hexagon_session.load_module(func_tir)

a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device)
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device)
c_hexagon = tvm.runtime.ndarray.array(
np.zeros((size_a, 32), dtype="int32"), device=hexagon_session.device
)

if tvm.testing.utils.IS_IN_CI:
# These are reduced for CI
number = 1
repeat = 1
else:
number = 100
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Magic number 100: Should this be a parameter (even if a single value) or a constant?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This one seems a bit circular since it would be

timer_number = 100 
timer_repeat = 100 
if tvm.testing.utils.IS_IN_CI:
     # These are reduced for CI
     number = 1
     repeat = 1
 else:
     number = timer_number
     repeat = timer_repeat


 timer = module.time_evaluator(
     "__tvm_main__", hexagon_session.device, number=number, repeat=repeat
 )

Which makes for quite a bit of unnecessary code. Also this is to some extent a magic number. I just chose it from experience and not tied to any functionality. The other option is I could do this

    if tvm.testing.utils.IS_IN_CI:
        # These are reduced for CI
        timer = module.time_evaluator(
            "__tvm_main__", hexagon_session.device, number=1, repeat=1
        )
    else:
        timer = module.time_evaluator(
            "__tvm_main__", hexagon_session.device, number=100, repeat=100
        )

But not sure that is better. Anyway let me know what you think.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I like option B.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated! ✅

repeat = 100


timer = module.time_evaluator(
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat
)
time = timer(a_hexagon, b_hexagon, c_hexagon)
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output)
return round(time.mean * 1000, 4)


@tvm.testing.fixture
def input_a(size_a):
return default_rng().integers(0, 8, (size_a, 128), dtype="uint8")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Magic number 128: Should this be a parameter (even if a single value) or a constant?

Copy link
Contributor Author

@nverke nverke Oct 10, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Changed all occurrences of 128 and 32 to be constants. Makes it a little more verbose but also a little more clear good idea! ✅



@tvm.testing.fixture
def input_w(size_w):
return default_rng().integers(0, 8, (size_w, 128), dtype="uint8")


@tvm.testing.fixture
def expected_output(size_a, size_w, input_a, input_w):
expected_output = np.zeros((size_a, 32), dtype="int32")
for n in range(size_a):
for x in range(size_w):
for i in range(32):
for r in range(4):
expected_output[n, i] += np.uint32(input_a[n, i * 4 + r]) * np.uint32(
input_w[x, i * 4 + r]
)
return expected_output

def get_single_dma_schedule(size_a, size_w):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This schedule looks correct. But, we also have to duplicate the compute statement here and hand-code the mem_copy intrinsics for synchronous DMA. Wondering if we can schedule the mem_copy intrinsics rather than hard-coding. There is a TE example of how to do this here. Could we apply that example to this test?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Attempted this and was unable to get the tensor desc to match because of some weirdness 😔.

@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [size_a, 128], dtype="uint8", align=128, mem_scope="global")
W = T.match_buffer(b, [size_w, 128], dtype="uint8", align=128, mem_scope="global")
C = T.match_buffer(c, [size_a, 32], dtype="int32", align=128, mem_scope="global")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Magic number 32: Should this be a parameter (even if a single value) or a constant?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Changed were possible! T.ramp() does not allow variables. ✅

A_global_vtcm = T.alloc_buffer(
[size_a, 128], dtype="uint8", align=128, mem_scope="global.vtcm"
)
W_global_vtcm = T.alloc_buffer(
[size_w, 128], dtype="uint8", align=128, mem_scope="global.vtcm"
)
C_global_vtcm = T.alloc_buffer(
[size_a, 32], dtype="int32", align=128, mem_scope="global.vtcm"
)
T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
A_global_vtcm.data,
T.tvm_stack_make_shape(size_a, 128, dtype="handle"),
0,
2,
A_global_vtcm.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
A.data,
T.tvm_stack_make_shape(size_a, 128, dtype="handle"),
0,
2,
A.dtype,
0,
dtype="handle",
),
T.cast(size_a, dtype="int") * 128,
dtype="int32",
)
)
T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
W_global_vtcm.data,
T.tvm_stack_make_shape(size_w, 128, dtype="handle"),
0,
2,
W_global_vtcm.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
W.data,
T.tvm_stack_make_shape(size_w, 128, dtype="handle"),
0,
2,
W.dtype,
0,
dtype="handle",
),
T.cast(size_w, dtype="int") * 128,
dtype="int32",
)
)
for n, i in T.grid(size_a, size_w):
with T.block("C"):
vn, vi = T.axis.remap("SR", [n, i])
T.reads(A_global_vtcm[vn, 0:128], W_global_vtcm[vi, 0:128], C_global_vtcm[vn, 0:32])
T.writes(C_global_vtcm[vn, 0:32])
with T.init():
for x in T.serial(32):
C_global_vtcm[vn, x] = 0
C_global_vtcm[vn, T.ramp(0, 1, 32)] += T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"),
T.uint32(2),
T.reinterpret(A_global_vtcm[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(W_global_vtcm[vi, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int32x32",
)
T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
C.data,
T.tvm_stack_make_shape(size_a, 128, dtype="handle"),
0,
2,
C.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
C_global_vtcm.data,
T.tvm_stack_make_shape(size_a, 128, dtype="handle"),
0,
2,
C_global_vtcm.dtype,
0,
dtype="handle",
),
T.cast(size_a, dtype="int") * 128,
dtype="int32",
)
)

sch = tvm.tir.Schedule(operator)

return sch


def get_fake_conv_vtcm_schedule(size_a, size_w, blocks=2):
sch = conv_approximation(size_a, size_w)

compute_block = sch.get_block("C")
sch.cache_read(compute_block, 1, "global.vtcm")

n = sch.get_loops(compute_block)[0]
no, _ = sch.split(n, [blocks, None])

cache_read_block_a = sch.cache_read(compute_block, 0, "global.vtcm")
sch.compute_at(cache_read_block_a, no)
sch.fuse(*sch.get_loops(cache_read_block_a)[1:])

cache_read_block_c = sch.cache_write(compute_block, 0, "global.vtcm")
sch.reverse_compute_at(cache_read_block_c, no)
sch.fuse(*sch.get_loops(cache_read_block_c)[1:])

return sch


def print_results(test_key, runtimes):
print(test_key)
for runtime in runtimes.items():
print("-{} took {} ms".format(runtime[0], runtime[1]))
print()


class TestMatMulVec:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nit: Class name needs updating.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done! ✅

# Removed most of these to speedup CI.
size_a = tvm.testing.parameter(
1024,
64 * 64,
128 * 128,
)

size_w = tvm.testing.parameter(
1 * 1,
3 * 3,
7 * 7,
9 * 9,
)

@tvm.testing.requires_hexagon
def test_loading_vtcm_for_vrmpy(
self,
hexagon_session,
size_a,
size_w,
input_a,
input_w,
expected_output,
):

if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1):
print("skipping test due to ci")
return

sch = conv_approximation(size_a, size_w)
base_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
base_vtcm_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [0])
async_input_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [0, 2])
async_input_output_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [2])
async_output_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_single_dma_schedule(size_a, size_w)
single_dma_runtime = evaluate(hexagon_session, sch, input_a, input_w, size_a, expected_output)

transfer_mb = round((2 * size_a * 128 + size_w * 128) / 1e6, 2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Some comments here about this math would be good.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

complexity = round(size_a * size_w * (128 * 4) / 1e9, 3)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same as above.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

print_results(
f"Test with A.size: {size_a * 128}, W.size: {size_w * 128}, computational complexity of {complexity} GOPs, and total memory transfer of {transfer_mb} MB...",
{
"without_vtcm": base_runtime,
"synchronous_dma": single_dma_runtime,
"base_vtcm": base_vtcm_runtime,
"async_dma_input": async_input_runtime,
"async_dma_output": async_output_runtime,
"async_dma_input_output": async_input_output_runtime,
},
)