-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Hexagon] Async DMA pipelining test suite #13005
Changes from 2 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,336 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" Test different strategies for loading data into vtcm before running HVX workloads. """ | ||
|
||
import numpy as np | ||
import tvm | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
|
||
def conv_approximation(size_a, size_w): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [size_a, 128], dtype="uint8", align=128) | ||
W = T.match_buffer(b, [size_w, 128], dtype="uint8", align=128) | ||
C = T.match_buffer(c, [size_a, 32], dtype="int32", align=128) | ||
for n, i in T.grid(size_a, size_w): | ||
with T.block("C"): | ||
vn, vi = T.axis.remap("SR", [n, i]) | ||
T.reads(A[vn, 0:128], W[vi, 0:128], C[vn, 0:32]) | ||
T.writes(C[vn, 0:32]) | ||
with T.init(): | ||
for x in T.serial(32): | ||
C[vn, x] = 0 | ||
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.acc.128B"), | ||
T.uint32(3), | ||
C[vn, T.ramp(0, 1, 32)], | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(W[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.dma_wait", | ||
0, # QueueId | ||
0, # Wait for 0 in flight | ||
dtype="int32", | ||
) | ||
) | ||
|
||
return tvm.tir.Schedule(operator) | ||
|
||
|
||
def evaluate(hexagon_session, sch, a, b, size_a, expected_output, use_async_copy=0): | ||
target_hexagon = tvm.target.hexagon("v68", link_params=True) | ||
with tvm.transform.PassContext(config={"tir.use_async_copy": use_async_copy}): | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array( | ||
np.zeros((size_a, 32), dtype="int32"), device=hexagon_session.device | ||
) | ||
|
||
if tvm.testing.utils.IS_IN_CI: | ||
# These are reduced for CI | ||
number = 1 | ||
repeat = 1 | ||
else: | ||
number = 100 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Magic number 100: Should this be a parameter (even if a single value) or a constant? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This one seems a bit circular since it would be
Which makes for quite a bit of unnecessary code. Also this is to some extent a magic number. I just chose it from experience and not tied to any functionality. The other option is I could do this
But not sure that is better. Anyway let me know what you think. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I like option B. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Updated! ✅ |
||
repeat = 100 | ||
|
||
|
||
timer = module.time_evaluator( | ||
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat | ||
) | ||
time = timer(a_hexagon, b_hexagon, c_hexagon) | ||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output) | ||
return round(time.mean * 1000, 4) | ||
|
||
|
||
@tvm.testing.fixture | ||
def input_a(size_a): | ||
return default_rng().integers(0, 8, (size_a, 128), dtype="uint8") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Magic number 128: Should this be a parameter (even if a single value) or a constant? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Changed all occurrences of 128 and 32 to be constants. Makes it a little more verbose but also a little more clear good idea! ✅ |
||
|
||
|
||
@tvm.testing.fixture | ||
def input_w(size_w): | ||
return default_rng().integers(0, 8, (size_w, 128), dtype="uint8") | ||
|
||
|
||
@tvm.testing.fixture | ||
def expected_output(size_a, size_w, input_a, input_w): | ||
expected_output = np.zeros((size_a, 32), dtype="int32") | ||
for n in range(size_a): | ||
for x in range(size_w): | ||
for i in range(32): | ||
for r in range(4): | ||
expected_output[n, i] += np.uint32(input_a[n, i * 4 + r]) * np.uint32( | ||
input_w[x, i * 4 + r] | ||
) | ||
return expected_output | ||
|
||
def get_single_dma_schedule(size_a, size_w): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This schedule looks correct. But, we also have to duplicate the compute statement here and hand-code the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Attempted this and was unable to get the tensor desc to match because of some weirdness 😔. |
||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [size_a, 128], dtype="uint8", align=128, mem_scope="global") | ||
W = T.match_buffer(b, [size_w, 128], dtype="uint8", align=128, mem_scope="global") | ||
C = T.match_buffer(c, [size_a, 32], dtype="int32", align=128, mem_scope="global") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Magic number 32: Should this be a parameter (even if a single value) or a constant? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Changed were possible! T.ramp() does not allow variables. ✅ |
||
A_global_vtcm = T.alloc_buffer( | ||
[size_a, 128], dtype="uint8", align=128, mem_scope="global.vtcm" | ||
) | ||
W_global_vtcm = T.alloc_buffer( | ||
[size_w, 128], dtype="uint8", align=128, mem_scope="global.vtcm" | ||
) | ||
C_global_vtcm = T.alloc_buffer( | ||
[size_a, 32], dtype="int32", align=128, mem_scope="global.vtcm" | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
A_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_a, 128, dtype="handle"), | ||
0, | ||
2, | ||
A_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
A.data, | ||
T.tvm_stack_make_shape(size_a, 128, dtype="handle"), | ||
0, | ||
2, | ||
A.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(size_a, dtype="int") * 128, | ||
dtype="int32", | ||
) | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
W_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_w, 128, dtype="handle"), | ||
0, | ||
2, | ||
W_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
W.data, | ||
T.tvm_stack_make_shape(size_w, 128, dtype="handle"), | ||
0, | ||
2, | ||
W.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(size_w, dtype="int") * 128, | ||
dtype="int32", | ||
) | ||
) | ||
for n, i in T.grid(size_a, size_w): | ||
with T.block("C"): | ||
vn, vi = T.axis.remap("SR", [n, i]) | ||
T.reads(A_global_vtcm[vn, 0:128], W_global_vtcm[vi, 0:128], C_global_vtcm[vn, 0:32]) | ||
T.writes(C_global_vtcm[vn, 0:32]) | ||
with T.init(): | ||
for x in T.serial(32): | ||
C_global_vtcm[vn, x] = 0 | ||
C_global_vtcm[vn, T.ramp(0, 1, 32)] += T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A_global_vtcm[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(W_global_vtcm[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
C.data, | ||
T.tvm_stack_make_shape(size_a, 128, dtype="handle"), | ||
0, | ||
2, | ||
C.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
C_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_a, 128, dtype="handle"), | ||
0, | ||
2, | ||
C_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(size_a, dtype="int") * 128, | ||
dtype="int32", | ||
) | ||
) | ||
|
||
sch = tvm.tir.Schedule(operator) | ||
|
||
return sch | ||
|
||
|
||
def get_fake_conv_vtcm_schedule(size_a, size_w, blocks=2): | ||
sch = conv_approximation(size_a, size_w) | ||
|
||
compute_block = sch.get_block("C") | ||
sch.cache_read(compute_block, 1, "global.vtcm") | ||
|
||
n = sch.get_loops(compute_block)[0] | ||
no, _ = sch.split(n, [blocks, None]) | ||
|
||
cache_read_block_a = sch.cache_read(compute_block, 0, "global.vtcm") | ||
sch.compute_at(cache_read_block_a, no) | ||
sch.fuse(*sch.get_loops(cache_read_block_a)[1:]) | ||
|
||
cache_read_block_c = sch.cache_write(compute_block, 0, "global.vtcm") | ||
sch.reverse_compute_at(cache_read_block_c, no) | ||
sch.fuse(*sch.get_loops(cache_read_block_c)[1:]) | ||
|
||
return sch | ||
|
||
|
||
def print_results(test_key, runtimes): | ||
print(test_key) | ||
for runtime in runtimes.items(): | ||
print("-{} took {} ms".format(runtime[0], runtime[1])) | ||
print() | ||
|
||
|
||
class TestMatMulVec: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Nit: Class name needs updating. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done! ✅ |
||
# Removed most of these to speedup CI. | ||
size_a = tvm.testing.parameter( | ||
1024, | ||
64 * 64, | ||
128 * 128, | ||
) | ||
|
||
size_w = tvm.testing.parameter( | ||
1 * 1, | ||
3 * 3, | ||
7 * 7, | ||
9 * 9, | ||
) | ||
|
||
@tvm.testing.requires_hexagon | ||
def test_loading_vtcm_for_vrmpy( | ||
self, | ||
hexagon_session, | ||
size_a, | ||
size_w, | ||
input_a, | ||
input_w, | ||
expected_output, | ||
): | ||
|
||
if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1): | ||
print("skipping test due to ci") | ||
return | ||
|
||
sch = conv_approximation(size_a, size_w) | ||
base_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
base_vtcm_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [0]) | ||
async_input_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [0, 2]) | ||
async_input_output_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [2]) | ||
async_output_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_single_dma_schedule(size_a, size_w) | ||
single_dma_runtime = evaluate(hexagon_session, sch, input_a, input_w, size_a, expected_output) | ||
|
||
transfer_mb = round((2 * size_a * 128 + size_w * 128) / 1e6, 2) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Some comments here about this math would be good. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ✅ |
||
complexity = round(size_a * size_w * (128 * 4) / 1e9, 3) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ✅ |
||
print_results( | ||
f"Test with A.size: {size_a * 128}, W.size: {size_w * 128}, computational complexity of {complexity} GOPs, and total memory transfer of {transfer_mb} MB...", | ||
{ | ||
"without_vtcm": base_runtime, | ||
"synchronous_dma": single_dma_runtime, | ||
"base_vtcm": base_vtcm_runtime, | ||
"async_dma_input": async_input_runtime, | ||
"async_dma_output": async_output_runtime, | ||
"async_dma_input_output": async_input_output_runtime, | ||
}, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You might add a comment here that this is necessary only for purposes of getting accurate timings. That is, we want to flush all async DMAs before we stop the clock to check perf.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good idea. Added ✅