aip | title | author | Status | last-call-end-date (*optional) | type | created | updated (*optional) | requires (*optional) |
---|---|---|---|---|---|---|---|---|
108 |
Enable interoperability for Federated Keyless Accounts for the same issuer (user-pool/tenant) |
Oliver He (oliver.he@aptoslabs.com) |
Draft |
<mm/dd/yyyy the last date to leave feedbacks and reviews> |
<Standard (Core, Networking, Interface, Application, Framework) | Informational | Process> |
11/08/2024 |
<mm/dd/yyyy> |
AIP-108 - Enable interoperability for Federated Keyless Accounts for the same issuer (user-pool/tenant)
This AIP proposes enabling Aptos Federated Keyless to be interoperable with dApps from the same issuer (user-pool/tenant).
For IAM providers like Auth0 and Cognito, JWT tokens are scoped to a user-pool/tenant via the iss
field, and they are also scoped to a specific application via the aud
field. This means that JWTs from the same issuer but with different aud
values are from different applications and cannot be used to derive the same Aptos Federated Keyless Account even though they represent the same user identity within the same user-pool/tenant.
Many customers of Auth0 and Cognito have applications with different branding within the same user-pool/tenant ecosystem. Thus it is natural for such customers to use different application identifiers for their applications for organizational purposes. This AIP will enable Aptos Federated Keyless Accounts to be interoperable across such applications.
- The relaxation of the
aud
field will allow for broader interoperability across applications within the same user-pool/tenant. This allows for broader adoption of Aptos Federated Keyless Accounts in such user ecosystems.
Risks
- Developers need to not use
aud
-less accounts when they want their keyless accounts to scoped to their own application. This can be mitigated by the Aptos SDK default behavior so that developers must explicitly enable usingaud
-less accounts. - This introduces an additional proving path, one where the
aud
is not checked. It is important that such proofs are rejected by the validator during transaction submission if the sending account requiresaud
to be present, as encoded in the KeylessPublicKey inside theIdCommitment
. Note that no changes to the validator authentication path are needed to support this, the work is done in the ZK relation in the circuit. Validators will verify proofs same as before. - As circuit changes are needed to support
aud
-less accounts, a new ceremony will be needed to generate the proving key and verification key. - We want such accounts to be limited to Federated Keyless Accounts, as constructing Keyless Accounts without aud checks is unsafe. This can be mitigated by the Aptos SDK disallowing
aud
-less accounts from being used as Keyless Accounts. The prover will also reject proof requests for Keyless providers (as of now Google and Apple). However, in a world where 3rd party provers are permitted, we cannot prevent developers from usingaud
-less accounts as Keyless Accounts, but developers would not have any incentive to construct such accounts for their users (these accounts would be accessable by any other dApp, regardless of trust). - The verification key will need an update, which will invalidate all existing proofs that are cached client side by dApps using Keyless. dApps will need to re-fetch a new proof to submit transactions with Keyless accounts. Additionally the prover will need to start proving with the new proving key right away after the update. The prover has already been updated to support the proving key rotations and the SDK also supports state checks to invalidate old proofs.
The ZK relation
- Verify that the public inputs hash
$\mathsf{pih}$ is correctly derived by hashing the inputs in$\textbf{w}_\mathsf{pub}$ with$H_\mathsf{zk}$ (as explained above). - Check the OIDC provider ID in the JWT:
- Assert
$\mathsf{iss\_val}\stackrel{?}{=}\mathsf{jwt}[\texttt{"iss"}]$
- Assert
- If using
email
-based IDs, ensure the email has been verified:- If
$\mathsf{uid\_key}\stackrel{?}{=}\texttt{"email"}$ , assert$\mathsf{jwt}[\texttt{"email\_verified"}] \stackrel{?}{=} \texttt{"true"}$
- If
- Check the user’s ID in the JWT:
- Assert
$\mathsf{uid\_val}\stackrel{?}{=}\mathsf{jwt}[\mathsf{uid\_key}]$
- Assert
- Check the address IDC uses the correct values:
- Assert
$\mathsf{addr\_idc} \stackrel{?}{=} H'(\mathsf{uid\_key}, \mathsf{uid\_val}, \mathsf{aud\_val}; r)$
- Assert
-
If we are doing
aud
checks (i.e.,$\mathsf{skip\_aud\_check} = \bot$ )-
Then: Are we in normal mode (i.e., we are not in recovery mode
$\Leftrightarrow \mathsf{override\_aud\_val} = \bot$ )- Then: check the managing application’s ID in the JWT: assert
$\mathsf{aud\_val}\stackrel{?}{=}\mathsf{jwt}[\texttt{"aud"}]$ - Else: check that the recovery service’s ID is in the JWT: assert
$\mathsf{override\_aud\_val}\stackrel{?}{=}\mathsf{jwt}[\texttt{"aud"}]$
- Then: check the managing application’s ID in the JWT: assert
- Else: assert
$\mathsf{aud\_val}\stackrel{?}{=}\texttt{""}$ (i.e.$\mathsf{aud\_val}$ should equal the empty string).
Old version:
Are we in normal mode (i.e., we are not in recovery mode
$\Leftrightarrow \mathsf{override\_aud\_val} = \bot$ )-
Then: check the managing application’s ID in the JWT: assert
$\mathsf{aud\_val}\stackrel{?}{=}\mathsf{jwt}[\texttt{"aud"}]$ -
Else: check that the recovery service’s ID is in the JWT: assert
$\mathsf{override\_aud\_val}\stackrel{?}{=}\mathsf{jwt}[\texttt{"aud"}]$
-
Then: Are we in normal mode (i.e., we are not in recovery mode
- Check the EPK is committed in the JWT’s
nonce
field:- Assert
$\mathsf{jwt}[\texttt{"nonce"}] \stackrel{?}{=} H’(\mathsf{epk},\mathsf{exp\_date};\rho)$
- Assert
- Check the EPK expiration date is not too far off into the future:
- Assert
$\mathsf{exp\_date} < \mathsf{jwt}[\texttt{"iat"}] + \mathsf{exp\_horizon}$
- Assert
- Parse
$\mathsf{extra\_field}$ as$\mathsf{extra\_field\_key}$ and$\mathsf{extra\_field\_val}$ and assert$\mathsf{extra\_field\_val}\stackrel{?}{=}\mathsf{jwt}[\mathsf{extra\_field\_key}]$ - Verify the OIDC signature
$\sigma_\mathsf{oidc}$ under$\mathsf{jwk}$ over the JWT$\mathsf{header}$ and payload$\mathsf{jwt}$ .
The alternative is to add an additional keyless public key type where the formula to compute the IdCommitment
does not contain the aud
at all.
This is the advantage of explicit type safety as a completely new validation path would be implemented. There would be no risk of such proofs being accepted for accounts that require aud
to be present due to explicit differences in how the proof would be gated on the type of public key.
However the drawbacks include:
- We need to add a new keyless public key type, which may not be needed if we can leverage the existing design. And avoiding proliferation of keyless public key types is desirable.
- Requiring implementation of a new authentication path in the authenticator, which may be error prone and takes additional engineering effort.
- Requires more complex changes to the prover as it would need to support a different public inputs hash calculation in order to differentiate between accounts with and without
aud
. Or it would need to use a different circuit version entirely and there would be a need to maintain two different circuit versions at the same time.
Thus if we can leverage the existing design, it would be preferable to do so.
This AIP's implementation has three parts -
-
We add an additional private input,
skip_aud_check
, into the circuit. This value will indicate whether theaud
check is enabled.- If it is disabled, the circuit will do the status quo set of verifications.
- If it is enabled, the circuit will use an empty string for the
aud
private input (as provided by the prover), which will be used as theaud
value committed in the IdCommitment. The circuit will skip matching the value of the JWT's aud claim with theaud
private input (which is the empty string).
Since the
aud
value is committed to in theIdCommitment
, a proof generated withskip_aud_check
will be rejected by the validator if the account is notaud
-less, as theIdCommitment
will be different, resulting in proof verification failing due to the public inputs hash computed by the validator (which includes theIdCommitment
) not being able to satisfy the ZK relation in order to verify the proof.Similarly, a proof generated without
skip_aud_check
will be rejected by the validator if the account isaud
-less, since the ZK relation will not be able to match the emptyaud
in theIdCommitment
with the non-emptyaud
in the JWT. -
The prover API will also require an update to allow for indiciating whether the
aud
check is enabled. This will be done by adding a new boolean argumentskip_aud_check
to theprove
API.#[derive(Debug, Serialize, Deserialize)] pub struct RequestInput { pub jwt_b64: String, pub epk: EphemeralPublicKey, #[serde(with = "hex")] pub epk_blinder: EphemeralPublicKeyBlinder, pub exp_date_secs: u64, pub exp_horizon_secs: u64, pub pepper: Pepper, pub uid_key: String, pub extra_field: Option<String>, pub aud_override: Option<String>, pub skip_aud_check: bool, // New argument }
-
The pepper API will also require an update to allow for indicating whether the
aud
check is enabled. This is because the pepper is derived using theaud
value as one of the inputs, and for audless accounts theaud
value needs to be the empty string in order for the account to be used across applications (which will differ by the value of theaud
claim in the JWT). Thus the pepper API needs to know whether the account isaud
-less to construct the pepper appropriately. This will be done by adding a new boolean argumentskip_aud_check
to thefetch_pepper
API.#[derive(Debug, Deserialize, Serialize)] pub struct PepperRequest { pub jwt: String, pub epk: EphemeralPublicKey, pub exp_date_secs: u64, pub epk_blinder: Vec<u8>, pub uid_key: Option<String>, pub derivation_path: Option<String>, pub skip_aud_check: bool, // New argument }
Additionally, the pepper service will limit
skip_aud_check
to only be true for OIDC providers that supportaud
-less accounts (currently only Auth0 and Cognito). -
The SDK will also need to be updated to support instantiating of
aud
-less accounts. This will require adding a new boolean argument to theKeylessAccount
constructor and constructing theKeylessPublicKey
andAccountAddress
appropriately.
- Write unit tests for the circuit to verify that it correctly handles the
aud
check. - Write unit tests for the SDK to verify that it correctly instantiates accounts with and without
aud
checks. - Do a manual end-to-end test in devnet/testnet via the SDK once the verification key is updated.
- Write smoke tests ensuring that
aud
-less accounts are rejected if the account requiresaud
to be present. - Make sure pepper service and prover service only allows
skip_aud_check
= true for OIDC providers that supportaud
-less accounts.
The core security considerations are:
- Making sure the the circuit can securely support
aud
-less accounts. - Making sure that such proofs are rejected if the account requires
aud
to be present (as encoded in theKeylessPublicKey
sIdCommitment
).
This will allow onboarding more users into the Aptos blockchain via keyless accounts1 and its extensions.
-Circuit changes: End of October 2024. -Ceremony completion: End of November 2024. -SDK update: by ceremony completion. -Prover service update: by ceremony completion. -Devnet verification key update: After ceremony completion. -Devnet testing: After verification key update. Should take a few hours. -Testnet verification key update: After devnet testing. -Testnet testing: After testnet verification key update. -Mainnet verification key update proposal: End of November 2024. -Mainnet verification key update: A week after proposal submission. Estimated early December 2024.
See above.
Already supported via telegram.
See above.