-
Notifications
You must be signed in to change notification settings - Fork 0
/
components.py
160 lines (139 loc) · 10.9 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
from scipy import interpolate
from other_foregrounds import radiance_to_krj as r2k
PIXIE_freq_min = 37.5e9 #central frequency of lowest channel (lower bound is 30 GHz)
PIXIE_freq_max = 6.0225e12 #central frequency of highest channel (chose this to get 400 total channels)
PIXIE_freqstep = 15.0e9
"""
A model for each component signal in the spectral distortion sky.
The function for each component takes as input a vector of frequency values (in Hz), a parameter (or parameters) describing the amplitude,
and (if necessary) other parameters that specify the SED, which we may want to vary (e.g., dust spectral index).
The output is Delta I, the specific intensity measured with respect to the assumed fiducial blackbody spectrum at T_CMB = 2.726 K.
"""
# constants (MKS units, except electron rest mass)
TCMB = 2.726 #Kelvin
hplanck=6.626068e-34 #MKS
kboltz=1.3806503e-23 #MKS
clight=299792458.0 #MKS
m_elec = 510.999 #keV!
# Delta_T distortion (i.e., this accounts for the difference in the true CMB temperature from our assumed value)
# N.B. I am only working to lowest order here, we may want to go beyond this (see Eq. 2 of http://arxiv.org/pdf/1306.5751v2.pdf and discussion thereafter; also Sec. 4.1 of that paper)
# freqs in Hz, DeltaT_amp dimensionless (DeltaT = (T_CMB_true - T_CMB_assumed)/T_CMB_assumed), DeltaI_DeltaT in W/m^2/Hz/sr
def DeltaI_DeltaT(freqs, DeltaT_amp=1.2e-4):
X = hplanck*freqs/(kboltz*TCMB)
return DeltaT_amp * X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0
def kDeltaI_DeltaT(freqs, DeltaT_amp=1.2e-4):
return r2k(freqs, DeltaI_DeltaT(freqs, DeltaT_amp))
# y-type distortion (i.e., non-relativistic tSZ) -- see e.g. Eq. 6 of Hill+2015
# freqs in Hz, y_amp dimensionless, DeltaI_y in W/m^2/Hz/sr
def DeltaI_y(freqs, y_amp=1.77e-6):
X = hplanck*freqs/(kboltz*TCMB)
return y_amp * (X / np.tanh(X/2.0) - 4.0) * X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0
def kDeltaI_y(freqs, y_amp=1.77e-6):
return r2k(freqs, DeltaI_y(freqs, y_amp))
# mu-type distortion -- see e.g. Section 2.3 of 1306.5751
#freqs in Hz, mu_amp dimensionless, DeltaI_mu in W/m^2/Hz/sr
def DeltaI_mu(freqs, mu_amp=2.e-8):
X = hplanck*freqs/(kboltz*TCMB)
return mu_amp * (X / 2.1923 - 1.0)/X * X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0
def kDeltaI_mu(freqs, mu_amp=2.e-8):
return r2k(freqs, DeltaI_mu(freqs, mu_amp))
# r-type distortion (first non-mu/non-y eigenmode -- this is only approximately correct for us to use here, but let's stick with it for now)
#freqs in Hz, r_amp dimensionless, DeltaI_r in W/m^2/Hz/sr
def DeltaI_r(freqs, r_amp=1.e-6):
X = hplanck*freqs/(kboltz*TCMB)
# first r-distortion eigenmode from Jens (Fig. 4 of 1306.5751)
rfile = np.loadtxt('templates/PCA_mode_1.dat')
Xr = hplanck*rfile[:,0]*1e9/(kboltz*TCMB) #convert from GHz to Hz
DeltaIr = rfile[:,1]*1e-18*r_amp #conver to W/m^2/Hz/sr
# linearly interpolate (set to zero above the highest frequency in Jens's file (his lowest frequency is 30 GHz, so things are OK on that end--put in a crazy value so we catch it if needed))
return np.interp(X, Xr, DeltaIr, left=-1e6, right=0.0)
def kDeltaI_r(freqs, r_amp=1.e-6):
return r2k(freqs, DeltaI_r(freqs, r_amp))
# relativistic tSZ distortion ("beyond y") -- see Hill+2015
# N.B. although this signal in principle requires an infinite number of parameters to be fully specified, in practice PIXIE will only be sensitive to (at best) one, which is
# the mean tau-weighted ICM electron temperature (kT_moments[0], below). We'll hold all the others fixed, or perhaps just put reasonable priors on them and marginalize over them.
def DeltaI_reltSZ(freqs, y_tot=1.77e-6, y_IGMplusreion=1.87e-7, kTmom1=0.208, kTmom2=0.299, kTmom3=0.892, kTmom4=4.02): #freqs in Hz, y parameters dimensionless, kT_moments in keV^n, DeltaI_reltSZ in W/m^2/Hz/sr; code uses up to kT_moments[3] (Eq. 8 of Hill+2015 with n=4)
# immediately convert from ytot to tau_ICM
tau_ICM = (y_tot - y_IGMplusreion)/kTmom1 * m_elec
# convert to Jens's moment definitions -- this formalism follows Chluba+2013 (MNRAS, 430, 3054)
w1 = (kTmom2)/(kTmom1)**2 - 1.0
w2 = (kTmom3)/(kTmom1)**3 - 3.0*(kTmom2)/(kTmom1)**2 + 2.0
w3 = (kTmom4)/(kTmom1)**4 - 4.0*(kTmom3)/(kTmom1)**3 + 6.0*(kTmom2)/(kTmom1)**2 - 3.0
#w4 not included for now; stop at w3, which corresponds to <(kT)^4> order
#w4 = (kTmom5)/(kTmom1)**5 - 5.0*(kTmom4)/(kTmom1)**4 + 10.0*(kTmom3)/(kTmom1)**3 - 10.0*(kTmom2)/(kTmom1)**2 + 4.0
X = hplanck*freqs/(kboltz*TCMB)
Xtwid = X*np.cosh(0.5*X)/np.sinh(0.5*X)
Stwid = X/np.sinh(0.5*X)
# relativistic expressions from Nozawa+2006
Y0=Xtwid-4.0
Y1=-10.0+23.5*Xtwid-8.4*Xtwid**2+0.7*Xtwid**3+Stwid**2*(-4.2+1.4*Xtwid)
Y2=-7.5+127.875*Xtwid-173.6*Xtwid**2.0+65.8*Xtwid**3.0-8.8*Xtwid**4.0+0.3666667*Xtwid**5.0+Stwid**2.0*(-86.8+131.6*Xtwid-48.4*Xtwid**2.0+4.7666667*Xtwid**3.0)+Stwid**4.0*(-8.8+3.11666667*Xtwid)
Y3=7.5+313.125*Xtwid-1419.6*Xtwid**2.0+1425.3*Xtwid**3.0-531.257142857*Xtwid**4.0+86.1357142857*Xtwid**5.0-6.09523809524*Xtwid**6.0+0.15238095238*Xtwid**7.0+Stwid**2.0*(-709.8+2850.6*Xtwid-2921.91428571*Xtwid**2.0+1119.76428571*Xtwid**3.0-173.714285714*Xtwid**4.0+9.14285714286*Xtwid**5.0)+Stwid**4.0*(-531.257142857+732.153571429*Xtwid-274.285714286*Xtwid**2.0+29.2571428571*Xtwid**3.0)+Stwid**6.0*(-25.9047619048+9.44761904762*Xtwid)
gfuncrel=Y0+Y1*(kTmom1/m_elec)+Y2*(kTmom1/m_elec)**2.0+Y3*(kTmom1/m_elec)**3.0 #third-order
ddgfuncrel=2.0*Y1+6.0*Y2*(kTmom1/m_elec)+24.0*Y3*(kTmom1/m_elec)**2.0
dddgfuncrel=6.0*Y2+24.0*Y3*(kTmom1/m_elec)
ddddgfuncrel=24.0*Y3
return X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0 * (y_IGMplusreion * Y0 + tau_ICM * (kTmom1/m_elec) * gfuncrel + tau_ICM/2.0 * ddgfuncrel * (kTmom1/m_elec)**2.0 * w1 + tau_ICM/6.0 * dddgfuncrel * (kTmom1/m_elec)**3.0 * w2 + tau_ICM/24.0 * ddddgfuncrel * (kTmom1/m_elec)**4.0 * w3)
def kDeltaI_reltSZ(freqs, y_tot=1.77e-6, y_IGMplusreion=1.87e-7, kTmom1=0.208, kTmom2=0.299, kTmom3=0.892, kTmom4=4.02):
return r2k(freqs, DeltaI_reltSZ(freqs, y_tot, y_IGMplusreion, kTmom1, kTmom2, kTmom3, kTmom4))
# 2-parameter version of rel. tSZ -- only allow y_tot and kTmom1 to vary
#freqs in Hz, y parameters dimensionless, kT_moments in keV^n, DeltaI_reltSZ in W/m^2/Hz/sr; code uses up to kT_moments[3] (Eq. 8 of Hill+2015 with n=4)
def DeltaI_reltSZ_2param(freqs, y_tot=1.77e-6, kTmom1=0.207937):
# parameters held fixed
y_IGMplusreion=1.87e-7
kTmom2=0.299
kTmom3=0.892
kTmom4=4.02
# immediately convert from ytot to tau_ICM
tau_ICM = (y_tot - y_IGMplusreion)/kTmom1 * m_elec
# convert to Jens's moment definitions -- this formalism follows Chluba+2013 (MNRAS, 430, 3054)
w1 = (kTmom2)/(kTmom1)**2 - 1.0
w2 = (kTmom3)/(kTmom1)**3 - 3.0*(kTmom2)/(kTmom1)**2 + 2.0
w3 = (kTmom4)/(kTmom1)**4 - 4.0*(kTmom3)/(kTmom1)**3 + 6.0*(kTmom2)/(kTmom1)**2 - 3.0
#w4 not included for now; stop at w3, which corresponds to <(kT)^4> order
#w4 = (kTmom5)/(kTmom1)**5 - 5.0*(kTmom4)/(kTmom1)**4 + 10.0*(kTmom3)/(kTmom1)**3 - 10.0*(kTmom2)/(kTmom1)**2 + 4.0
X = hplanck*freqs/(kboltz*TCMB)
Xtwid = X*np.cosh(0.5*X)/np.sinh(0.5*X)
Stwid = X/np.sinh(0.5*X)
# relativistic expressions from Nozawa+2006
Y0=Xtwid-4.0
Y1=-10.0+23.5*Xtwid-8.4*Xtwid**2+0.7*Xtwid**3+Stwid**2*(-4.2+1.4*Xtwid)
Y2=-7.5+127.875*Xtwid-173.6*Xtwid**2.0+65.8*Xtwid**3.0-8.8*Xtwid**4.0+0.3666667*Xtwid**5.0+Stwid**2.0*(-86.8+131.6*Xtwid-48.4*Xtwid**2.0+4.7666667*Xtwid**3.0)+Stwid**4.0*(-8.8+3.11666667*Xtwid)
Y3=7.5+313.125*Xtwid-1419.6*Xtwid**2.0+1425.3*Xtwid**3.0-531.257142857*Xtwid**4.0+86.1357142857*Xtwid**5.0-6.09523809524*Xtwid**6.0+0.15238095238*Xtwid**7.0+Stwid**2.0*(-709.8+2850.6*Xtwid-2921.91428571*Xtwid**2.0+1119.76428571*Xtwid**3.0-173.714285714*Xtwid**4.0+9.14285714286*Xtwid**5.0)+Stwid**4.0*(-531.257142857+732.153571429*Xtwid-274.285714286*Xtwid**2.0+29.2571428571*Xtwid**3.0)+Stwid**6.0*(-25.9047619048+9.44761904762*Xtwid)
gfuncrel=Y0+Y1*(kTmom1/m_elec)+Y2*(kTmom1/m_elec)**2.0+Y3*(kTmom1/m_elec)**3.0 #third-order
ddgfuncrel=2.0*Y1+6.0*Y2*(kTmom1/m_elec)+24.0*Y3*(kTmom1/m_elec)**2.0
dddgfuncrel=6.0*Y2+24.0*Y3*(kTmom1/m_elec)
ddddgfuncrel=24.0*Y3
return X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0 * (y_IGMplusreion * Y0 + tau_ICM * (kTmom1/m_elec) * gfuncrel + tau_ICM/2.0 * ddgfuncrel * (kTmom1/m_elec)**2.0 * w1 + tau_ICM/6.0 * dddgfuncrel * (kTmom1/m_elec)**3.0 * w2 + tau_ICM/24.0 * ddddgfuncrel * (kTmom1/m_elec)**4.0 * w3)
def kDeltaI_reltSZ_2param(freqs, y_tot=1.77e-6, kTmom1=0.207937):
return r2k(freqs, DeltaI_reltSZ_2param(freqs, y_tot, kTmom1))
# 2-parameter version of rel. tSZ -- formulated in terms of y_tot and y-weighted effective temperature
# freqs in Hz, y parameter dimensionless, kT_yweight in keV, DeltaI_reltSZ in W/m^2/Hz/sr
#def DeltaI_reltSZ_2param_yweight(freqs, y_tot=1.77e-6, kT_yweight=1.295):
def DeltaI_reltSZ_2param_yweight(freqs, y_tot=1.77e-6, kT_yweight=1.245):
# immediately convert from ytot to tau_ICM
tau = y_tot/kT_yweight * m_elec
X = hplanck*freqs/(kboltz*TCMB)
Xtwid = X*np.cosh(0.5*X)/np.sinh(0.5*X)
Stwid = X/np.sinh(0.5*X)
# relativistic expressions from Nozawa+2006
Y0=Xtwid-4.0
Y1=-10.0+23.5*Xtwid-8.4*Xtwid**2+0.7*Xtwid**3+Stwid**2*(-4.2+1.4*Xtwid)
Y2=-7.5+127.875*Xtwid-173.6*Xtwid**2.0+65.8*Xtwid**3.0-8.8*Xtwid**4.0+0.3666667*Xtwid**5.0+Stwid**2.0*(-86.8+131.6*Xtwid-48.4*Xtwid**2.0+4.7666667*Xtwid**3.0)+Stwid**4.0*(-8.8+3.11666667*Xtwid)
Y3=7.5+313.125*Xtwid-1419.6*Xtwid**2.0+1425.3*Xtwid**3.0-531.257142857*Xtwid**4.0+86.1357142857*Xtwid**5.0-6.09523809524*Xtwid**6.0+0.15238095238*Xtwid**7.0+Stwid**2.0*(-709.8+2850.6*Xtwid-2921.91428571*Xtwid**2.0+1119.76428571*Xtwid**3.0-173.714285714*Xtwid**4.0+9.14285714286*Xtwid**5.0)+Stwid**4.0*(-531.257142857+732.153571429*Xtwid-274.285714286*Xtwid**2.0+29.2571428571*Xtwid**3.0)+Stwid**6.0*(-25.9047619048+9.44761904762*Xtwid)
gfuncrel_only=Y1*(kT_yweight/m_elec)+Y2*(kT_yweight/m_elec)**2.0+Y3*(kT_yweight/m_elec)**3.0
#third-order; "only" = no Y0 term (i.e., no non-rel. term)
return X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0 * (y_tot * Y0 + tau * (kT_yweight/m_elec) * gfuncrel_only)
def kDeltaI_reltSZ_2param_yweight(freqs, y_tot=1.77e-6, kT_yweight=1.245):
return r2k(freqs, DeltaI_reltSZ_2param_yweight(freqs, y_tot, kT_yweight))
# recombination lines from template
# file is in GHz and W / m^2 Hz sr
def recombination(freqs, scale=1.0):
rdata = np.loadtxt('templates/recombination/total_spectrum_f.dat')
fs = rdata[:,0] * 1e9
recomb = rdata[:,1]
template = interpolate.interp1d(np.log10(fs), np.log10(recomb), fill_value=np.log10(1e-30), bounds_error=False)
return scale * 10.0**template(np.log10(freqs))
def krecombination(freqs, scale=1.0):
return r2k(freqs, recombination(freqs, scale))