-
Notifications
You must be signed in to change notification settings - Fork 0
/
other_foregrounds.py
251 lines (197 loc) · 8.97 KB
/
other_foregrounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
from astropy.io import fits
from numpy import log10
from scipy import interpolate
# constants (MKS units, except electron rest mass)
TCMB = 2.726 # Kelvin
hplanck = 6.626068e-34 # MKS
kboltz = 1.3806503e-23 # MKS
clight = 299792458.0 # MKS
m_elec = 510.999 # keV!
# Foreground units are in Kelvin
# 1 Jy = 1e-26 W / (Hz sr m^2)
# frequencies are expected in Hz
# Kelvin to W/Hz/sr/m^2
def krj_to_radiance(nu, y):
return 2.0 * nu * nu / (clight ** 2) * kboltz * y
# W/Hz/sr/m^2 to Kelvin
def radiance_to_krj(nu, y):
return y * clight ** 2 / (2. * kboltz * nu * nu)
### Reorganizing ###
# These are all actually in W/Hz/sr/m^2!! Jy/sr and then mult by 1e-26
# because the signals in components are in W/Hz/sr/m^2
def jens_synch_rad(nu, As=288., alps=-0.82, w2s=0.2):
nu0s = 100.e9
return As * (nu / nu0s) ** alps * (1. + 0.5 * w2s * np.log(nu / nu0s) ** 2) * 1e-26
def jens_synch_rad1(nu, As=288., alps=-0.82):
nu0s = 100.e9
return As * (nu / nu0s) ** alps * 1e-26
def jens_synch(nu, As=288., alps=-0.82, w2s=0.2):
return radiance_to_krj(nu, jens_synch_rad(nu, As, alps, w2s))
def jens_freefree_rad(nu, EM=300.):
Te = 7000.
Teff = (Te / 1.e3) ** (3. / 2)
nuff = 255.33e9 * Teff
gff = 1. + np.log(1. + (nuff / nu) ** (np.sqrt(3) / np.pi))
return EM * gff * 1e-26
def jens_freefree(nu, EM=300., Te=7000.):
return radiance_to_krj(nu, jens_freefree_rad(nu, EM, Te))
def jens_freefree1p(nu, EM=300.):
return radiance_to_krj(nu, jens_freefree_rad(nu, EM))
def kspinning_dust(nu, Asd=92.e-6):
nup = 19.0e9
nu0 = 22.8e9
nup0 = 30.e9
ame_file = np.load('templates/spinningdust_template.npy')
ame_nu = ame_file[0]
ame_I = ame_file[1]
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value="extrapolate")
numer_fsd = 10.0 ** fsd(log10(nu * nup0 / nup))
denom_fsd = 10.0 ** fsd(log10(nu0 * nup0 / nup))
return Asd * (nu0 / nu) ** 2 * numer_fsd / denom_fsd
def spinning_dust(nu, Asd=1.):
ame_file = np.loadtxt('templates/ame.txt')
ame_nu = ame_file[0]
ame_I = ame_file[1]
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value="extrapolate")
return Asd * 10.**fsd(log10(nu))
def spinning_dust_rad_old(nu, Asd=1470.e-26):
nup = 19.0e9
nu0 = 22.8e9
nup0 = 30.e9
ame_file = np.load('templates/spinningdust_template.npy')
ame_nu = ame_file[0]
ame_I = ame_file[1]
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value="extrapolate")
numer_fsd = 10.0 ** fsd(log10(nu * nup0 / nup))
denom_fsd = 10.0 ** fsd(log10(nu0 * nup0 / nup))
return Asd * numer_fsd / denom_fsd
def spinning_dust2(nu, Asd=92.e-6, nup=19.e9):
nu0 = 22.8e9
nup0 = 30.e9
ame_file = np.load('templates/spinningdust_template.npy')
ame_nu = ame_file[0]
ame_I = ame_file[1]
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value="extrapolate")
numer_fsd = 10.0 ** fsd(log10(nu * nup0 / nup))
denom_fsd = 10.0 ** fsd(log10(nu0 * nup0 / nup))
return krj_to_radiance(nu, Asd * (nu0 / nu) ** 2 * numer_fsd / denom_fsd) * 1.e26
def thermal_dust_rad(nu, Ad=5.e-26, Bd=1.53, Td=21.):
nu0 = 545.0e9 # planck frequency
gam = hplanck / (kboltz * Td)
return Ad * (nu/1.e9)**2 * (nu / nu0) ** (Bd + 1.0) * (np.exp(gam * nu0) - 1.0) / (np.exp(gam * nu) - 1.0)
def thermal_dust_rad_old(nu, Ad=163.e-6, Bd=1.53, Td=21.):
return krj_to_radiance(nu, thermal_dust(nu, Ad, Bd, Td))
def thermal_dust(nu, Ad=163.e-6, Bd=1.53, Td=21.):
nu0 = 545.0e9 # planck frequency
gam = hplanck / (kboltz * Td)
return Ad * (nu / nu0) ** (Bd + 1.0) * (np.exp(gam * nu0) - 1.0) / (np.exp(gam * nu) - 1.0)
def cib_rad(nu, Acib=1.38e-26, Bcib=0.86, Tcib=18.8):
nu0 = 545.0e9
gam = hplanck / (kboltz * Tcib)
return Acib * (nu/1.e9)**2 * (nu / nu0) ** (Bcib + 1.0) * (np.exp(gam * nu0) - 1.0) / (np.exp(gam * nu) - 1.0)
def cib_rad_old(nu, Acib=45.e-6, Bcib=0.86, Tcib=18.8):
return krj_to_radiance(nu, cib(nu, Acib, Bcib, Tcib))
def cib(nu, Acib=45.e-6, Bcib=0.86, Tcib=18.8):
nu0 = 545.0e9
gam = hplanck / (kboltz * Tcib)
return Acib * (nu / nu0) ** (Bcib + 1.0) * (np.exp(gam * nu0) - 1.0) / (np.exp(gam * nu) - 1.0)
def co_rad(nu, amp=1.):
x = np.load('templates/co_arrays.npy')
freqs = x[0]
co = x[1]
fs = interpolate.interp1d(log10(freqs), log10(co), bounds_error=False, fill_value="extrapolate")
return amp * 10. ** fs(log10(nu)) * 1e-26
def co(nu, amp=1.):
return radiance_to_krj(nu, co_rad(nu, amp))
### Older Functions ###
# blackbody T to W/Hz/sr/m^2
def blackbody(nu, T=2.725):
X = hplanck * nu / (kboltz * T)
return 2.0 * hplanck * (nu * nu * nu) / (clight ** 2) * (1.0 / (np.exp(X) - 1.0))
def dbdt(nu, T):
return 2.0 * (X * X * X * X) * np.exp(X) * (kboltz * T) ** 3 / (hplanck * clight) ** 2 / (np.exp(X) - 1.0) ** 2
# CMB rms in brightness temp
def cmb(freqs, T=TCMB, A=3.0e-6):
X = hplanck * freqs / (kboltz * T)
gf = (np.exp(X) - 1) ** 2 / (X * X * np.exp(X))
return A / gf
# UNITS ARE KELVIN
### Foreground components from PlanckX2015 ###
# see Table 4 of https://arxiv.org/pdf/1502.01588v2.pdf
# Here we are in brightness tempearture (as a first pass) with unit K Rayleigh Jeans
# I've put the best fit Planck values as defaults
# Thermal Dust
# Params Ad, Bd, Td which are amplitude [K_RJ, brightness temp fluctuation w.r.t. CMB blackbody], spectral index, and temperature [K]
# Params were 163e-6, 1.51, 21 but to match jens and some papers we use:
# Synchrotron (based on Haslam and GALPROP)
# Params As, alpha : amplitude [K_RJ, brightness temp fluctuation w.r.t. CMB blackbody] and shift parameter
# planck says As=20 but matching to Jens gives As~=10.
def synchrotron(nu, As=10.0, alpha=0.26):
# for details use synch_temp.info and synch_temp[2].columns
# frequency is in GHz in the file and ranges from 1 MHz to 100 THz
# spectral radiance is in the next field
# interpolate to other frequencies
# interp will throw an error if we give it frequencies outside of the range
nu0 = 408.0e6 # Hz
synch_temp = fits.open('templates/COM_CompMap_Synchrotron-commander_0256_R2.00.fits')
synch_nu = synch_temp[2].data.field(0) # GHz
synch_nu *= 1.e9 # Hz
synch_I = synch_temp[2].data.field(1) # W/Hz/sr/m^2
fs = interpolate.interp1d(log10(synch_nu), log10(synch_I))
numer_fs = 10.0 ** fs(log10(nu / alpha))
denom_fs = 10.0 ** fs(log10(nu0 / alpha))
return As * (nu0 / nu) ** 2 * numer_fs / denom_fs
# Free-free
# Params EM, Te : emission measure (=integrated square electron density along LOS) and electron temp [K]
def freefree(nu, EM=15, Te=7000.0):
T4 = (Te * 10 ** -4) ** (-3. / 2.)
f9 = nu / (10 ** 9)
gff = np.log(np.exp(5.960 - (np.sqrt(3.) / np.pi) * np.log(f9 * T4)) + np.e)
tau = 0.05468 * (Te ** (-3. / 2.)) * EM * gff / f9 ** 2
return (1.0 - np.exp(-tau)) * Te
def freefree2(freqs, EM=9., Te=7000.):
nu = freqs * 1.e-9
gff = np.log(4.955e-2 / nu) + 1.5 * np.log(Te)
tff = 3.014e-2 * (Te ** -1.5) * (nu ** -2) * EM * gff
return Te * (1. - np.exp(-tff))
# AME
# Params Asd, fp : amplitude [K_RJ, brightness temp fluctuation w.r.t. CMB blackbody] and peak frequency
def ame(nu, Asd=1.e-4):
# template nu go from 50 MHz to 500 GHz...
# had to add a fill value of 1.e-6 at high frequencies...
nup = 19.0e9
nu0 = 22.8e9
nup0 = 33.e9
ame_temp = fits.open('templates/COM_CompMap_AME-commander_0256_R2.00.fits')
ame_nu = ame_temp[3].data.field(0)
ame_nu *= 1.e9
ame_I = ame_temp[3].data.field(1)
ame_I /= 1.0e26
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value=-52.5)
numer_fsd = 10.0 ** fsd(log10(nu * nup0 / nup))
denom_fsd = 10.0 ** fsd(log10(nu0 * nup0 / nup))
return Asd * (nu0 / nu) ** 2 * numer_fsd / denom_fsd
def ame2(nu, Asd=92.e-6, nup=19.e9, nu0=22.e9, nup0=30.e9):
ame_temp = fits.open('templates/COM_CompMap_AME-commander_0256_R2.00.fits')
ame_nu = ame_temp[3].data.field(0)
ame_nu *= 1.e9 # Hz
ame_I = ame_temp[3].data.field(1) # Jy cm^2 /sr/H
ame_I /= 1.0e26
fsd = interpolate.interp1d(log10(ame_nu), log10(ame_I), bounds_error=False, fill_value=-52.5)
numer_fsd = 10.0 ** fsd(log10(nu * nup0 / nup))
denom_fsd = 10.0 ** fsd(log10(nu0 * nup0 / nup))
return Asd * (nu0 / nu) ** 2 * numer_fsd / denom_fsd
# SZ
# params Asz>0
# including this as a check but is of course identical to y-distortion
def sz(nu, ysz=1.4e-6):
X = hplanck * nu / (kboltz * TCMB)
gf = (np.exp(X) - 1) ** 2 / (X * X * np.exp(X))
return ysz * TCMB * (X * (np.exp(X) + 1.) / (np.exp(X) - 1.) - 4.) / gf # JCH: fixed some errors here
def cib_rad_old(nu, Ambb=170., TCIB=18.5, KF=0.75):
X = hplanck * nu / (kboltz * TCIB)
nu0 = 3.e12
return Ambb * TCIB ** 3 * (nu / nu0) ** KF * X ** 3 / (np.exp(X) - 1.) * 1e-26
def cib_old(nu, Ambb=170., TCIB=18.5, KF=0.75):
return radiance_to_krj(nu, cib_rad(nu, Ambb, TCIB, KF))