forked from tunz/transformer-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decoder.py
137 lines (108 loc) · 4.77 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import time
import torch
import torch.nn.functional as F
from utils import utils
# pylint: disable=not-callable
def encode_inputs(sentence, model, src_data, beam_size, device):
inputs = src_data['field'].preprocess(sentence)
inputs.append(src_data['field'].eos_token)
inputs = [inputs]
inputs = src_data['field'].process(inputs, device=device)
with torch.no_grad():
src_mask = utils.create_pad_mask(inputs, src_data['pad_idx'])
enc_output = model.encode(inputs, src_mask)
enc_output = enc_output.repeat(beam_size, 1, 1)
return enc_output, src_mask
def update_targets(targets, best_indices, idx, vocab_size):
best_tensor_indices = torch.div(best_indices, vocab_size)
best_token_indices = torch.fmod(best_indices, vocab_size)
new_batch = torch.index_select(targets, 0, best_tensor_indices)
new_batch[:, idx] = best_token_indices
return new_batch
def get_result_sentence(indices_history, trg_data, vocab_size):
result = []
k = 0
for best_indices in indices_history[::-1]:
best_idx = best_indices[k]
# TODO: get this vocab_size from target.pt?
k = best_idx // vocab_size
best_token_idx = best_idx % vocab_size
best_token = trg_data['field'].vocab.itos[best_token_idx]
result.append(best_token)
return ' '.join(result[::-1])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--model_dir', type=str, required=True)
parser.add_argument('--max_length', type=int, default=100)
parser.add_argument('--beam_size', type=int, default=4)
parser.add_argument('--alpha', type=float, default=0.6)
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--translate', action='store_true')
args = parser.parse_args()
beam_size = args.beam_size
# Load fields.
if args.translate:
src_data = torch.load(args.data_dir + '/source.pt')
trg_data = torch.load(args.data_dir + '/target.pt')
# Load a saved model.
device = torch.device('cpu' if args.no_cuda else 'cuda')
model = utils.load_checkpoint(args.model_dir, device)
pads = torch.tensor([trg_data['pad_idx']] * beam_size, device=device)
pads = pads.unsqueeze(-1)
# We'll find a target sequence by beam search.
scores_history = [torch.zeros((beam_size,), dtype=torch.float,
device=device)]
indices_history = []
cache = {}
eos_idx = trg_data['field'].vocab.stoi[trg_data['field'].eos_token]
if args.translate:
sentence = input('Source? ')
# Encoding inputs.
if args.translate:
start_time = time.time()
enc_output, src_mask = encode_inputs(sentence, model, src_data,
beam_size, device)
targets = pads
start_idx = 0
else:
enc_output, src_mask = None, None
sentence = input('Target? ').split()
for idx, _ in enumerate(sentence):
sentence[idx] = trg_data['field'].vocab.stoi[sentence[idx]]
sentence.append(trg_data['pad_idx'])
targets = torch.tensor([sentence], device=device)
start_idx = targets.size(1) - 1
start_time = time.time()
with torch.no_grad():
for idx in range(start_idx, args.max_length):
if idx > start_idx:
targets = torch.cat((targets, pads), dim=1)
t_self_mask = utils.create_trg_self_mask(targets.size()[1],
device=targets.device)
t_mask = utils.create_pad_mask(targets, trg_data['pad_idx'])
pred = model.decode(targets, enc_output, src_mask,
t_self_mask, t_mask, cache)
pred = pred[:, idx].squeeze(1)
vocab_size = pred.size(1)
pred = F.log_softmax(pred, dim=1)
if idx == start_idx:
scores = pred[0]
else:
scores = scores_history[-1].unsqueeze(1) + pred
length_penalty = pow(((5. + idx + 1.) / 6.), args.alpha)
scores = scores / length_penalty
scores = scores.view(-1)
best_scores, best_indices = scores.topk(beam_size, 0)
scores_history.append(best_scores)
indices_history.append(best_indices)
# Stop searching when the best output of beam is EOS.
if best_indices[0].item() % vocab_size == eos_idx:
break
targets = update_targets(targets, best_indices, idx, vocab_size)
result = get_result_sentence(indices_history, trg_data, vocab_size)
print("Result: {}".format(result))
print("Elapsed Time: {:.2f} sec".format(time.time() - start_time))
if __name__ == '__main__':
main()