-
Notifications
You must be signed in to change notification settings - Fork 9
/
nmf_kl_sparse_es.m
183 lines (164 loc) · 6.02 KB
/
nmf_kl_sparse_es.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [W,H,errs,vout] = nmf_kl_sparse_es(V, r, varargin)
% function [W,H,errs,vout] = nmf_kl_sparse_es(V, r, varargin)
%
% Implements NMF using the normalized Kullback-Leibler divergence (see [1]
% for details) with the sparsity constraints proposed in [2,3]:
%
% min D(V||W*H) + alpha*sum(sum(H)) s.t. W>=0, H>=0
%
% Inputs: (all except V and r are optional and passed in in name-value pairs)
% V [mat] - Input matrix (n x m)
% r [num] - Rank of the decomposition
% alpha [num] - Sparsity parameter [0]
% niter [num] - Max number of iterations to use [100]
% thresh [num] - Number between 0 and 1 used to determine convergence;
% the algorithm has considered to have converged when:
% (err(t-1)-err(t))/(err(1)-err(t)) < thresh
% ignored if thesh is empty [[]]
% norm_w [num] - Type of normalization to use for columns of W [1]
% can be 1 (1-norm) or 2 (2-norm)
% norm_h [num] - Type of normalization to use for rows of H [0]
% can be 0 (none), 1 (1-norm), 2 (2-norm), or 'a' (sum(H(:))=1)
% verb [num] - Verbosity level (0-3, 0 means silent) [1]
% W0 [mat] - Initial W values (n x r) [[]]
% empty means initialize randomly
% H0 [mat] - Initial H values (r x m) [[]]
% empty means initialize randomly
% W [mat] - Fixed value of W (n x r) [[]]
% empty means we should update W at each iteration while
% passing in a matrix means that W will be fixed
% H [mat] - Fixed value of H (r x m) [[]]
% empty means we should update H at each iteration while
% passing in a matrix means that H will be fixed
% myeps [num] - Small value to add to denominator of updates [1e-20]
%
% Outputs:
% W [mat] - Basis matrix (n x r)
% H [mat] - Weight matrix (r x m)
% errs [vec] - Error of each iteration of the algorithm
% (packed into vout cell-array):
% I_errs [vec] - I-divergence errors at each iteration
% s_errs [vec] - Sparsity errors at each iteration
%
% [1] D. Lee and S. Seung, "Algorithms for Non-negative Matrix Factorization",
% NIPS, 2001
% [2] J. Eggert and E. Korner, "Sparse Coding and NMF", in Neural Networks, 2004
% [3] M. Schmidt, "Speech Separation using Non-negative Features and Sparse
% Non-negative Matrix Factorization", Tech. Report, 2007
%
% 2010-01-14 Graham Grindlay (grindlay@ee.columbia.edu)
% Copyright (C) 2008-2010 Graham Grindlay (grindlay@ee.columbia.edu)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% do some sanity checks
if min(min(V)) < 0
error('Matrix entries can not be negative');
end
if min(sum(V,2)) == 0
error('Not all entries in a row can be zero');
end
[n,m] = size(V);
% process arguments
[niter, thresh, alpha, norm_w, norm_h, verb, myeps, W0, H0, W, H] = ...
parse_opt(varargin, 'niter', 100, 'thresh', [], 'alpha', 0, ...
'norm_w', 1, 'norm_h', 0, 'verb', 1, ...
'myeps', 1e-20, 'W0', [], 'H0', [], ...
'W', [], 'H', []);
if norm_w == 0
error('nmf_kl_sparse_es: W has to be normalized to prevent scaling drift!');
end
% initialize W based on what we got passed
if isempty(W)
if isempty(W0)
W = rand(n,r);
else
W = W0;
end
update_W = true;
else
update_W = false;
end
% initialize H based on what we got passed
if isempty(H)
if isempty(H0)
H = rand(r,m);
else
H = H0;
end
update_H = true;
else % we aren't H
update_H = false;
end
% normalize W
W = normalize_W(W,norm_w);
if norm_h ~= 0
% normalize H
H = normalize_H(H,norm_h);
end
% preallocate matrix of ones
Onn = ones(n,n);
Onm = ones(n,m);
I_errs = zeros(niter,1);
s_errs = zeros(niter,1);
errs = zeros(niter,1);
for t = 1:niter
% update H if requested
if update_H
H = H .* ( (W'*(V./(W*H))) ./ max(W'*Onm + alpha, myeps) );
if norm_h ~= 0
H = normalize_H(H,norm_h);
end
end
% update W if requested
if update_W
R = V./(W*H);
if norm_w == 1
W = W .* ( (R*H' + (Onn*(Onm*H' .* W))) ./ ...
max(Onm*H' + (Onn*(R*H' .* W)), myeps) );
elseif norm_w == 2
W = W .* ( (R*H' + W .* (Onn*(Onm*H' .* W))) ./ ...
max(Onm*H' + W .* (Onn*(R*H' .* W)), myeps) );
end
W = normalize_W(W,norm_w);
end
R = W*H;
% compute squared error
I_errs(t) = sum(V(:).*log(V(:)./R(:)) - V(:) + R(:));
s_errs(t) = sum(H(:));
errs(t) = I_errs(t) + alpha*s_errs(t);
% display error if asked
if verb >= 3
fprintf(1, ['nmf_kl_sparse_es: iter=%d, I-div=%f, sparse_err=%f (alpha=%f), ' ...
'total_err=%f\n'], t, I_errs(t), s_errs(t), alpha, errs(t));
end
% check for convergence if asked
if ~isempty(thresh)
if t > 2
if (errs(t-1)-errs(t))/(errs(1)-errs(t-1)) < thresh
break;
end
end
end
end
% display error if asked
if verb >= 2
fprintf(1, ['nmf_kl_sparse_es: final, I-div=%f, sparse_err=%f (alpha=%f), ' ...
'total_err=%f\n'], I_errs(t), s_errs(t), alpha, errs(t));
end
% if we broke early, get rid of extra 0s in the errs vector
I_errs = I_errs(1:t);
s_errs = s_errs(1:t);
errs = errs(1:t);
% needed to conform to function signature required by nmf_alg
vout = {I_errs,s_errs};