forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kmeans.py
91 lines (78 loc) · 3.25 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
from typing import Any
import bench
import numpy as np
from daal4py import kmeans
from daal4py.sklearn._utils import getFPType
parser = argparse.ArgumentParser(description='daal4py K-Means clustering '
'benchmark')
parser.add_argument('-i', '--filei', '--fileI', '--init',
type=str, help='Initial clusters')
parser.add_argument('-t', '--tol', default=0., type=float,
help='Absolute threshold')
parser.add_argument('--maxiter', type=int, default=100,
help='Maximum number of iterations')
parser.add_argument('--n-clusters', type=int, help='Number of clusters')
params = bench.parse_args(parser, prefix='daal4py')
# Load generated data
X_train, X_test, _, _ = bench.load_data(params, add_dtype=True)
X_init: Any
# Load initial centroids from specified path
if params.filei is not None:
X_init = {k: v.astype(params.dtype) for k, v in np.load(params.filei).items()}
params.n_clusters = X_init.shape[0]
# or choose random centroids from training data
else:
np.random.seed(params.seed)
centroids_idx = np.random.randint(low=0, high=X_train.shape[0],
size=params.n_clusters)
if hasattr(X_train, "iloc"):
X_init = X_train.iloc[centroids_idx].values
else:
X_init = X_train[centroids_idx]
# Define functions to time
def test_fit(X, X_init):
algorithm = kmeans(
fptype=getFPType(X),
nClusters=params.n_clusters,
maxIterations=params.maxiter,
assignFlag=True,
accuracyThreshold=params.tol
)
return algorithm.compute(X, X_init)
def test_predict(X, X_init):
algorithm = kmeans(
fptype=getFPType(X),
nClusters=params.n_clusters,
maxIterations=0,
assignFlag=True,
accuracyThreshold=0.0
)
return algorithm.compute(X, X_init)
# Time fit
fit_time, res = bench.measure_function_time(test_fit, X_train, X_init, params=params)
train_inertia = float(res.objectiveFunction[0, 0])
# Time predict
predict_time, res = bench.measure_function_time(
test_predict, X_test, X_init, params=params)
test_inertia = float(res.objectiveFunction[0, 0])
bench.print_output(library='daal4py', algorithm='kmeans',
stages=['training', 'prediction'],
params=params, functions=['KMeans.fit', 'KMeans.predict'],
times=[fit_time, predict_time], metric_type='inertia',
metrics=[train_inertia, test_inertia], data=[X_train, X_test])