forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ridge.py
68 lines (55 loc) · 2.67 KB
/
ridge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
import numpy as np
from daal4py import ridge_regression_prediction, ridge_regression_training
from daal4py.sklearn._utils import getFPType
parser = argparse.ArgumentParser(description='daal4py ridge regression '
'benchmark')
parser.add_argument('--no-fit-intercept', dest='fit_intercept', default=True,
action='store_false',
help="Don't fit intercept (assume data already centered)")
parser.add_argument('--alpha', type=float, default=1.0,
help='Regularization strength')
params = bench.parse_args(parser, prefix='daal4py')
# Generate random data
X_train, X_test, y_train, y_test = bench.load_data(
params, generated_data=['X_train', 'y_train'], add_dtype=True,
label_2d=True if params.file_X_train is not None else False)
# Create our regression objects
def test_fit(X, y):
regr_train = ridge_regression_training(
fptype=getFPType(X), ridgeParameters=np.array([[params.alpha]]),
interceptFlag=params.fit_intercept)
return regr_train.compute(X, y)
def test_predict(Xp, model):
regr_predict = ridge_regression_prediction(fptype=getFPType(Xp))
return regr_predict.compute(Xp, model)
# Time fit
fit_time, res = bench.measure_function_time(
test_fit, X_train, y_train, params=params)
# Time predict
predict_time, yp = bench.measure_function_time(
test_predict, X_test, res.model, params=params)
test_rmse = bench.rmse_score(yp.prediction, y_test)
pres = test_predict(X_train, res.model)
train_rmse = bench.rmse_score(pres.prediction, y_train)
bench.print_output(library='daal4py', algorithm='ridge_regression',
stages=['training', 'prediction'], params=params,
functions=['Ridge.fit', 'Ridge.predict'],
times=[fit_time, predict_time], metric_type='rmse',
metrics=[train_rmse, test_rmse], data=[X_train, X_test])