(mut self, thunk: P) -> Vec>
where
P: Fn() + Send + Sync + Copy + 'static,
{
+ let mut stealers = Vec::>::new();
for core in self.cores {
self.round = core.id;
+ let worker = Worker::new_fifo();
+ stealers.push(worker.stealer());
+
thread::Builder::new()
.name("bastion-async-thread".to_string())
.spawn(move || {
@@ -35,5 +41,7 @@ impl Distributor {
})
.expect("cannot start the thread for running proc");
}
+
+ stealers
}
}
diff --git a/bastion-executor/src/lib.rs b/bastion-executor/src/lib.rs
index 8cf4b57b..d4af3a66 100644
--- a/bastion-executor/src/lib.rs
+++ b/bastion-executor/src/lib.rs
@@ -3,3 +3,7 @@ pub mod distributor;
pub mod placement;
pub mod pool;
pub mod thread_recovery;
+pub mod load_balancer;
+pub mod run_queue;
+pub mod sleepers;
+pub mod worker;
diff --git a/bastion-executor/src/load_balancer.rs b/bastion-executor/src/load_balancer.rs
new file mode 100644
index 00000000..5f648727
--- /dev/null
+++ b/bastion-executor/src/load_balancer.rs
@@ -0,0 +1,27 @@
+use lazy_static::*;
+use std::thread;
+
+pub struct LoadBalancer();
+
+impl LoadBalancer {
+ pub fn trigger() {
+ unimplemented!()
+ }
+}
+
+#[inline]
+pub(crate) fn launch() -> &'static LoadBalancer {
+ lazy_static! {
+ static ref LOAD_BALANCER: LoadBalancer = {
+ thread::Builder::new()
+ .name("load-balancer-thread".to_string())
+ .spawn(|| {
+
+ })
+ .expect("load-balancer couldn't start");
+
+ LoadBalancer()
+ };
+ }
+ &*LOAD_BALANCER
+}
diff --git a/bastion-executor/src/placement.rs b/bastion-executor/src/placement.rs
index fa866625..48a5ac31 100644
--- a/bastion-executor/src/placement.rs
+++ b/bastion-executor/src/placement.rs
@@ -288,30 +288,30 @@ mod macos {
use super::CoreId;
- type kern_return_t = c_int;
- type integer_t = c_int;
- type natural_t = c_uint;
- type thread_t = c_uint;
- type thread_policy_flavor_t = natural_t;
- type mach_msg_type_number_t = natural_t;
+ type KernReturnT = c_int;
+ type IntegerT = c_int;
+ type NaturalT = c_uint;
+ type ThreadT = c_uint;
+ type ThreadPolicyFlavorT = NaturalT;
+ type MachMsgTypeNumberT = NaturalT;
#[repr(C)]
- struct thread_affinity_policy_data_t {
- affinity_tag: integer_t,
+ struct ThreadAffinityPolicyDataT {
+ affinity_tag: IntegerT,
}
- type thread_policy_t = *mut thread_affinity_policy_data_t;
+ type ThreadPolicyT = *mut ThreadAffinityPolicyDataT;
- const THREAD_AFFINITY_POLICY: thread_policy_flavor_t = 4;
+ const THREAD_AFFINITY_POLICY: ThreadPolicyFlavorT = 4;
#[link(name = "System", kind = "framework")]
extern "C" {
fn thread_policy_set(
- thread: thread_t,
- flavor: thread_policy_flavor_t,
- policy_info: thread_policy_t,
- count: mach_msg_type_number_t,
- ) -> kern_return_t;
+ thread: ThreadT,
+ flavor: ThreadPolicyFlavorT,
+ policy_info: ThreadPolicyT,
+ count: MachMsgTypeNumberT,
+ ) -> KernReturnT;
}
pub fn get_core_ids() -> Option> {
@@ -324,20 +324,20 @@ mod macos {
}
pub fn set_for_current(core_id: CoreId) {
- let THREAD_AFFINITY_POLICY_COUNT: mach_msg_type_number_t =
- mem::size_of::() as mach_msg_type_number_t
- / mem::size_of::() as mach_msg_type_number_t;
+ let thread_affinity_policy_count: MachMsgTypeNumberT =
+ mem::size_of::() as MachMsgTypeNumberT
+ / mem::size_of::() as MachMsgTypeNumberT;
- let mut info = thread_affinity_policy_data_t {
- affinity_tag: core_id.id as integer_t,
+ let mut info = ThreadAffinityPolicyDataT {
+ affinity_tag: core_id.id as IntegerT,
};
unsafe {
thread_policy_set(
- pthread_self() as thread_t,
+ pthread_self() as ThreadT,
THREAD_AFFINITY_POLICY,
- &mut info as thread_policy_t,
- THREAD_AFFINITY_POLICY_COUNT,
+ &mut info as ThreadPolicyT,
+ thread_affinity_policy_count,
);
}
}
diff --git a/bastion-executor/src/pool.rs b/bastion-executor/src/pool.rs
index 0d3f69ff..1a86aff5 100644
--- a/bastion-executor/src/pool.rs
+++ b/bastion-executor/src/pool.rs
@@ -1,19 +1,41 @@
-use crate::distributor::Distributor;
+use super::distributor::Distributor;
+use super::run_queue::{Worker, Injector, Stealer};
use lazy_static::*;
+use lightproc::prelude::*;
+use super::sleepers::Sleepers;
-pub struct Pool {}
+pub struct Pool {
+ pub injector: Injector,
+ pub stealers: Vec>,
+ pub sleepers: Sleepers,
+}
+
+impl Pool {
+ /// Error recovery for the fallen threads
+ pub fn recover_async_thread() {
+ unimplemented!()
+ }
+
+ pub fn fetch_proc(&self, local: &Worker) -> Option {
+ // Pop only from the local queue with full trust
+ local.pop()
+ }
+}
#[inline]
pub fn get() -> &'static Pool {
lazy_static! {
static ref POOL: Pool = {
let distributor = Distributor::new();
-
- distributor.assign(|| {
+ let stealers = distributor.assign(|| {
println!("1,2,3");
});
- Pool {}
+ Pool {
+ injector: Injector::new(),
+ stealers,
+ sleepers: Sleepers::new(),
+ }
};
}
&*POOL
diff --git a/bastion-executor/src/run_queue.rs b/bastion-executor/src/run_queue.rs
new file mode 100644
index 00000000..613b3846
--- /dev/null
+++ b/bastion-executor/src/run_queue.rs
@@ -0,0 +1,2161 @@
+//! Concurrent work-stealing deques.
+//!
+//! These data structures are most commonly used in work-stealing schedulers. The typical setup
+//! involves a number of threads, each having its own FIFO or LIFO queue (*worker*). There is also
+//! one global FIFO queue (*injector*) and a list of references to *worker* queues that are able to
+//! steal tasks (*stealers*).
+//!
+//! We spawn a new task onto the scheduler by pushing it into the *injector* queue. Each worker
+//! thread waits in a loop until it finds the next task to run and then runs it. To find a task, it
+//! first looks into its local *worker* queue, and then into the *injector* and *stealers*.
+//!
+//! # Queues
+//!
+//! [`Injector`] is a FIFO queue, where tasks are pushed and stolen from opposite ends. It is
+//! shared among threads and is usually the entry point for new tasks.
+//!
+//! [`Worker`] has two constructors:
+//!
+//! * [`new_fifo()`] - Creates a FIFO queue, in which tasks are pushed and popped from opposite
+//! ends.
+//! * [`new_lifo()`] - Creates a LIFO queue, in which tasks are pushed and popped from the same
+//! end.
+//!
+//! Each [`Worker`] is owned by a single thread and supports only push and pop operations.
+//!
+//! Method [`stealer()`] creates a [`Stealer`] that may be shared among threads and can only steal
+//! tasks from its [`Worker`]. Tasks are stolen from the end opposite to where they get pushed.
+//!
+//! # Stealing
+//!
+//! Steal operations come in three flavors:
+//!
+//! 1. [`steal()`] - Steals one task.
+//! 2. [`steal_batch()`] - Steals a batch of tasks and moves them into another worker.
+//! 3. [`steal_batch_and_pop()`] - Steals a batch of tasks, moves them into another queue, and pops
+//! one task from that worker.
+//!
+//! In contrast to push and pop operations, stealing can spuriously fail with [`Steal::Retry`], in
+//! which case the steal operation needs to be retried.
+//!
+//! # Examples
+//!
+//! Suppose a thread in a work-stealing scheduler is idle and looking for the next task to run. To
+//! find an available task, it might do the following:
+//!
+//! 1. Try popping one task from the local worker queue.
+//! 2. Try stealing a batch of tasks from the global injector queue.
+//! 3. Try stealing one task from another thread using the stealer list.
+//!
+//! An implementation of this work-stealing strategy:
+//!
+//! ```
+//! use crossbeam_deque::{Injector, Steal, Stealer, Worker};
+//! use std::iter;
+//!
+//! fn find_task(
+//! local: &Worker,
+//! global: &Injector,
+//! stealers: &[Stealer],
+//! ) -> Option {
+//! // Pop a task from the local queue, if not empty.
+//! local.pop().or_else(|| {
+//! // Otherwise, we need to look for a task elsewhere.
+//! iter::repeat_with(|| {
+//! // Try stealing a batch of tasks from the global queue.
+//! global.steal_batch_and_pop(local)
+//! // Or try stealing a task from one of the other threads.
+//! .or_else(|| stealers.iter().map(|s| s.steal()).collect())
+//! })
+//! // Loop while no task was stolen and any steal operation needs to be retried.
+//! .find(|s| !s.is_retry())
+//! // Extract the stolen task, if there is one.
+//! .and_then(|s| s.success())
+//! })
+//! }
+//! ```
+//!
+//! [`Worker`]: struct.Worker.html
+//! [`Stealer`]: struct.Stealer.html
+//! [`Injector`]: struct.Injector.html
+//! [`Steal::Retry`]: enum.Steal.html#variant.Retry
+//! [`new_fifo()`]: struct.Worker.html#method.new_fifo
+//! [`new_lifo()`]: struct.Worker.html#method.new_lifo
+//! [`stealer()`]: struct.Worker.html#method.stealer
+//! [`steal()`]: struct.Stealer.html#method.steal
+//! [`steal_batch()`]: struct.Stealer.html#method.steal_batch
+//! [`steal_batch_and_pop()`]: struct.Stealer.html#method.steal_batch_and_pop
+
+extern crate crossbeam_epoch as epoch;
+extern crate crossbeam_utils as utils;
+
+use std::cell::{Cell, UnsafeCell};
+use std::cmp;
+use std::fmt;
+use std::iter::FromIterator;
+use std::marker::PhantomData;
+use std::mem::{self, ManuallyDrop};
+use std::ptr;
+use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering};
+use std::sync::Arc;
+
+use epoch::{Atomic, Owned};
+use utils::{Backoff, CachePadded};
+
+// Minimum buffer capacity.
+const MIN_CAP: usize = 64;
+// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`.
+const MAX_BATCH: usize = 32;
+// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets
+// deallocated as soon as possible.
+const FLUSH_THRESHOLD_BYTES: usize = 1 << 10;
+
+/// A buffer that holds tasks in a worker queue.
+///
+/// This is just a pointer to the buffer and its length - dropping an instance of this struct will
+/// *not* deallocate the buffer.
+struct Buffer {
+ /// Pointer to the allocated memory.
+ ptr: *mut T,
+
+ /// Capacity of the buffer. Always a power of two.
+ cap: usize,
+}
+
+unsafe impl Send for Buffer {}
+
+impl Buffer {
+ /// Allocates a new buffer with the specified capacity.
+ fn alloc(cap: usize) -> Buffer {
+ debug_assert_eq!(cap, cap.next_power_of_two());
+
+ let mut v = Vec::with_capacity(cap);
+ let ptr = v.as_mut_ptr();
+ mem::forget(v);
+
+ Buffer { ptr, cap }
+ }
+
+ /// Deallocates the buffer.
+ unsafe fn dealloc(self) {
+ drop(Vec::from_raw_parts(self.ptr, 0, self.cap));
+ }
+
+ /// Returns a pointer to the task at the specified `index`.
+ unsafe fn at(&self, index: isize) -> *mut T {
+ // `self.cap` is always a power of two.
+ self.ptr.offset(index & (self.cap - 1) as isize)
+ }
+
+ /// Writes `task` into the specified `index`.
+ ///
+ /// This method might be concurrently called with another `read` at the same index, which is
+ /// technically speaking a data race and therefore UB. We should use an atomic store here, but
+ /// that would be more expensive and difficult to implement generically for all types `T`.
+ /// Hence, as a hack, we use a volatile write instead.
+ unsafe fn write(&self, index: isize, task: T) {
+ ptr::write_volatile(self.at(index), task)
+ }
+
+ /// Reads a task from the specified `index`.
+ ///
+ /// This method might be concurrently called with another `write` at the same index, which is
+ /// technically speaking a data race and therefore UB. We should use an atomic load here, but
+ /// that would be more expensive and difficult to implement generically for all types `T`.
+ /// Hence, as a hack, we use a volatile write instead.
+ unsafe fn read(&self, index: isize) -> T {
+ ptr::read_volatile(self.at(index))
+ }
+}
+
+impl Clone for Buffer {
+ fn clone(&self) -> Buffer {
+ Buffer {
+ ptr: self.ptr,
+ cap: self.cap,
+ }
+ }
+}
+
+impl Copy for Buffer {}
+
+/// Internal queue data shared between the worker and stealers.
+///
+/// The implementation is based on the following work:
+///
+/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev]
+/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models.
+/// PPoPP 2013.][weak-mem]
+/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++
+/// atomics. OOPSLA 2013.][checker]
+///
+/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974
+/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524
+/// [checker]: https://dl.acm.org/citation.cfm?id=2509514
+struct Inner {
+ /// The front index.
+ front: AtomicIsize,
+
+ /// The back index.
+ back: AtomicIsize,
+
+ /// The underlying buffer.
+ buffer: CachePadded>>,
+}
+
+impl Drop for Inner {
+ fn drop(&mut self) {
+ // Load the back index, front index, and buffer.
+ let b = self.back.load(Ordering::Relaxed);
+ let f = self.front.load(Ordering::Relaxed);
+
+ unsafe {
+ let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected());
+
+ // Go through the buffer from front to back and drop all tasks in the queue.
+ let mut i = f;
+ while i != b {
+ ptr::drop_in_place(buffer.deref().at(i));
+ i = i.wrapping_add(1);
+ }
+
+ // Free the memory allocated by the buffer.
+ buffer.into_owned().into_box().dealloc();
+ }
+ }
+}
+
+/// Worker queue flavor: FIFO or LIFO.
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+enum Flavor {
+ /// The first-in first-out flavor.
+ Fifo,
+
+ /// The last-in first-out flavor.
+ Lifo,
+}
+
+/// A worker queue.
+///
+/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal
+/// tasks from it. Task schedulers typically create a single worker queue per thread.
+///
+/// # Examples
+///
+/// A FIFO worker:
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_fifo();
+/// let s = w.stealer();
+///
+/// w.push(1);
+/// w.push(2);
+/// w.push(3);
+///
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(w.pop(), Some(2));
+/// assert_eq!(w.pop(), Some(3));
+/// ```
+///
+/// A LIFO worker:
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_lifo();
+/// let s = w.stealer();
+///
+/// w.push(1);
+/// w.push(2);
+/// w.push(3);
+///
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(w.pop(), Some(3));
+/// assert_eq!(w.pop(), Some(2));
+/// ```
+pub struct Worker {
+ /// A reference to the inner representation of the queue.
+ inner: Arc>>,
+
+ /// A copy of `inner.buffer` for quick access.
+ buffer: Cell>,
+
+ /// The flavor of the queue.
+ flavor: Flavor,
+
+ /// Indicates that the worker cannot be shared among threads.
+ _marker: PhantomData<*mut ()>, // !Send + !Sync
+}
+
+unsafe impl Send for Worker {}
+
+impl Worker {
+ /// Creates a FIFO worker queue.
+ ///
+ /// Tasks are pushed and popped from opposite ends.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::::new_fifo();
+ /// ```
+ pub fn new_fifo() -> Worker {
+ let buffer = Buffer::alloc(MIN_CAP);
+
+ let inner = Arc::new(CachePadded::new(Inner {
+ front: AtomicIsize::new(0),
+ back: AtomicIsize::new(0),
+ buffer: CachePadded::new(Atomic::new(buffer)),
+ }));
+
+ Worker {
+ inner,
+ buffer: Cell::new(buffer),
+ flavor: Flavor::Fifo,
+ _marker: PhantomData,
+ }
+ }
+
+ /// Creates a LIFO worker queue.
+ ///
+ /// Tasks are pushed and popped from the same end.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::::new_lifo();
+ /// ```
+ pub fn new_lifo() -> Worker {
+ let buffer = Buffer::alloc(MIN_CAP);
+
+ let inner = Arc::new(CachePadded::new(Inner {
+ front: AtomicIsize::new(0),
+ back: AtomicIsize::new(0),
+ buffer: CachePadded::new(Atomic::new(buffer)),
+ }));
+
+ Worker {
+ inner,
+ buffer: Cell::new(buffer),
+ flavor: Flavor::Lifo,
+ _marker: PhantomData,
+ }
+ }
+
+ /// Creates a stealer for this queue.
+ ///
+ /// The returned stealer can be shared among threads and cloned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::::new_lifo();
+ /// let s = w.stealer();
+ /// ```
+ pub fn stealer(&self) -> Stealer {
+ Stealer {
+ inner: self.inner.clone(),
+ flavor: self.flavor,
+ }
+ }
+
+ /// Resizes the internal buffer to the new capacity of `new_cap`.
+ #[cold]
+ unsafe fn resize(&self, new_cap: usize) {
+ // Load the back index, front index, and buffer.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Relaxed);
+ let buffer = self.buffer.get();
+
+ // Allocate a new buffer and copy data from the old buffer to the new one.
+ let new = Buffer::alloc(new_cap);
+ let mut i = f;
+ while i != b {
+ ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1);
+ i = i.wrapping_add(1);
+ }
+
+ let guard = &epoch::pin();
+
+ // Replace the old buffer with the new one.
+ self.buffer.replace(new);
+ let old =
+ self.inner
+ .buffer
+ .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard);
+
+ // Destroy the old buffer later.
+ guard.defer_unchecked(move || old.into_owned().into_box().dealloc());
+
+ // If the buffer is very large, then flush the thread-local garbage in order to deallocate
+ // it as soon as possible.
+ if mem::size_of::() * new_cap >= FLUSH_THRESHOLD_BYTES {
+ guard.flush();
+ }
+ }
+
+ /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the
+ /// buffer.
+ fn reserve(&self, reserve_cap: usize) {
+ if reserve_cap > 0 {
+ // Compute the current length.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::SeqCst);
+ let len = b.wrapping_sub(f) as usize;
+
+ // The current capacity.
+ let cap = self.buffer.get().cap;
+
+ // Is there enough capacity to push `reserve_cap` tasks?
+ if cap - len < reserve_cap {
+ // Keep doubling the capacity as much as is needed.
+ let mut new_cap = cap * 2;
+ while new_cap - len < reserve_cap {
+ new_cap *= 2;
+ }
+
+ // Resize the buffer.
+ unsafe {
+ self.resize(new_cap);
+ }
+ }
+ }
+ }
+
+ /// Returns `true` if the queue is empty.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ ///
+ /// assert!(w.is_empty());
+ /// w.push(1);
+ /// assert!(!w.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::SeqCst);
+ b.wrapping_sub(f) <= 0
+ }
+
+ /// Pushes a task into the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ /// w.push(1);
+ /// w.push(2);
+ /// ```
+ pub fn push(&self, task: T) {
+ // Load the back index, front index, and buffer.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Acquire);
+ let mut buffer = self.buffer.get();
+
+ // Calculate the length of the queue.
+ let len = b.wrapping_sub(f);
+
+ // Is the queue full?
+ if len >= buffer.cap as isize {
+ // Yes. Grow the underlying buffer.
+ unsafe {
+ self.resize(2 * buffer.cap);
+ }
+ buffer = self.buffer.get();
+ }
+
+ // Write `task` into the slot.
+ unsafe {
+ buffer.write(b, task);
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Increment the back index.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Release);
+ }
+
+ /// Pops a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_fifo();
+ /// w.push(1);
+ /// w.push(2);
+ ///
+ /// assert_eq!(w.pop(), Some(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// assert_eq!(w.pop(), None);
+ /// ```
+ pub fn pop(&self) -> Option {
+ // Load the back and front index.
+ let b = self.inner.back.load(Ordering::Relaxed);
+ let f = self.inner.front.load(Ordering::Relaxed);
+
+ // Calculate the length of the queue.
+ let len = b.wrapping_sub(f);
+
+ // Is the queue empty?
+ if len <= 0 {
+ return None;
+ }
+
+ match self.flavor {
+ // Pop from the front of the queue.
+ Flavor::Fifo => {
+ // Try incrementing the front index to pop the task.
+ let f = self.inner.front.fetch_add(1, Ordering::SeqCst);
+ let new_f = f.wrapping_add(1);
+
+ if b.wrapping_sub(new_f) < 0 {
+ self.inner.front.store(f, Ordering::Relaxed);
+ return None;
+ }
+
+ unsafe {
+ // Read the popped task.
+ let buffer = self.buffer.get();
+ let task = buffer.read(f);
+
+ // Shrink the buffer if `len - 1` is less than one fourth of the capacity.
+ if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 {
+ self.resize(buffer.cap / 2);
+ }
+
+ Some(task)
+ }
+ }
+
+ // Pop from the back of the queue.
+ Flavor::Lifo => {
+ // Decrement the back index.
+ let b = b.wrapping_sub(1);
+ self.inner.back.store(b, Ordering::Relaxed);
+
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the front index.
+ let f = self.inner.front.load(Ordering::Relaxed);
+
+ // Compute the length after the back index was decremented.
+ let len = b.wrapping_sub(f);
+
+ if len < 0 {
+ // The queue is empty. Restore the back index to the original task.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
+ None
+ } else {
+ // Read the task to be popped.
+ let buffer = self.buffer.get();
+ let mut task = unsafe { Some(buffer.read(b)) };
+
+ // Are we popping the last task from the queue?
+ if len == 0 {
+ // Try incrementing the front index.
+ if self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // Failed. We didn't pop anything.
+ mem::forget(task.take());
+ }
+
+ // Restore the back index to the original task.
+ self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
+ } else {
+ // Shrink the buffer if `len` is less than one fourth of the capacity.
+ if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 {
+ unsafe {
+ self.resize(buffer.cap / 2);
+ }
+ }
+ }
+
+ task
+ }
+ }
+ }
+ }
+}
+
+impl fmt::Debug for Worker {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad("Worker { .. }")
+ }
+}
+
+/// A stealer handle of a worker queue.
+///
+/// Stealers can be shared among threads.
+///
+/// Task schedulers typically have a single worker queue per worker thread.
+///
+/// # Examples
+///
+/// ```
+/// use crossbeam_deque::{Steal, Worker};
+///
+/// let w = Worker::new_lifo();
+/// w.push(1);
+/// w.push(2);
+///
+/// let s = w.stealer();
+/// assert_eq!(s.steal(), Steal::Success(1));
+/// assert_eq!(s.steal(), Steal::Success(2));
+/// assert_eq!(s.steal(), Steal::Empty);
+/// ```
+pub struct Stealer {
+ /// A reference to the inner representation of the queue.
+ inner: Arc>>,
+
+ /// The flavor of the queue.
+ flavor: Flavor,
+}
+
+unsafe impl Send for Stealer {}
+unsafe impl Sync for Stealer {}
+
+impl Stealer {
+ /// Returns `true` if the queue is empty.
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w = Worker::new_lifo();
+ /// let s = w.stealer();
+ ///
+ /// assert!(s.is_empty());
+ /// w.push(1);
+ /// assert!(!s.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let f = self.inner.front.load(Ordering::Acquire);
+ atomic::fence(Ordering::SeqCst);
+ let b = self.inner.back.load(Ordering::Acquire);
+ b.wrapping_sub(f) <= 0
+ }
+
+ /// Steals a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Steal, Worker};
+ ///
+ /// let w = Worker::new_lifo();
+ /// w.push(1);
+ /// w.push(2);
+ ///
+ /// let s = w.stealer();
+ /// assert_eq!(s.steal(), Steal::Success(1));
+ /// assert_eq!(s.steal(), Steal::Success(2));
+ /// ```
+ pub fn steal(&self) -> Steal {
+ // Load the front index.
+ let f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ return Steal::Empty;
+ }
+
+ // Load the buffer and read the task at the front.
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+ let task = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ mem::forget(task);
+ return Steal::Retry;
+ }
+
+ // Return the stolen task.
+ Steal::Success(task)
+ }
+
+ /// Steals a batch of tasks and pushes them into another worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Worker;
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// s.steal_batch(&w2);
+ /// assert_eq!(w2.pop(), Some(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// ```
+ pub fn steal_batch(&self, dest: &Worker) -> Steal<()> {
+ // Load the front index.
+ let mut f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ let len = b.wrapping_sub(f);
+ if len <= 0 {
+ return Steal::Empty;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = cmp::min((len as usize + 1) / 2, MAX_BATCH);
+ dest.reserve(batch_size);
+ let mut batch_size = batch_size as isize;
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ // Load the buffer.
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+
+ match self.flavor {
+ // Steal a batch of tasks from the front at once.
+ Flavor::Fifo => {
+ // Copy the batch from the source to the destination buffer.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i));
+ dest_buffer.write(dest_b.wrapping_add(i), task);
+ }
+ }
+ }
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i));
+ dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
+ }
+ }
+ }
+ }
+
+ // Try incrementing the front index to steal the batch.
+ if self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(batch_size),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ dest_b = dest_b.wrapping_add(batch_size);
+ }
+
+ // Steal a batch of tasks from the front one by one.
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ // If this is not the first steal, check whether the queue is empty.
+ if i > 0 {
+ // We've already got the current front index. Now execute the fence to
+ // synchronize with other threads.
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ batch_size = i;
+ break;
+ }
+ }
+
+ // Read the task at the front.
+ let task = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it and break from the loop.
+ mem::forget(task);
+ batch_size = i;
+ break;
+ }
+
+ // Write the stolen task into the destination buffer.
+ unsafe {
+ dest_buffer.write(dest_b, task);
+ }
+
+ // Move the source front index and the destination back index one step forward.
+ f = f.wrapping_add(1);
+ dest_b = dest_b.wrapping_add(1);
+ }
+
+ // If we didn't steal anything, the operation needs to be retried.
+ if batch_size == 0 {
+ return Steal::Retry;
+ }
+
+ // If stealing into a FIFO queue, stolen tasks need to be reversed.
+ if dest.flavor == Flavor::Fifo {
+ for i in 0..batch_size / 2 {
+ unsafe {
+ let i1 = dest_b.wrapping_sub(batch_size - i);
+ let i2 = dest_b.wrapping_sub(i + 1);
+ let t1 = dest_buffer.read(i1);
+ let t2 = dest_buffer.read(i2);
+ dest_buffer.write(i1, t2);
+ dest_buffer.write(i2, t1);
+ }
+ }
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ dest.inner.back.store(dest_b, Ordering::Release);
+
+ // Return with success.
+ Steal::Success(())
+ }
+
+ /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Steal, Worker};
+ ///
+ /// let w1 = Worker::new_fifo();
+ /// w1.push(1);
+ /// w1.push(2);
+ /// w1.push(3);
+ /// w1.push(4);
+ ///
+ /// let s = w1.stealer();
+ /// let w2 = Worker::new_fifo();
+ ///
+ /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1));
+ /// assert_eq!(w2.pop(), Some(2));
+ /// ```
+ pub fn steal_batch_and_pop(&self, dest: &Worker) -> Steal {
+ // Load the front index.
+ let mut f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ let len = b.wrapping_sub(f);
+ if len <= 0 {
+ return Steal::Empty;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = cmp::min((len as usize - 1) / 2, MAX_BATCH - 1);
+ dest.reserve(batch_size);
+ let mut batch_size = batch_size as isize;
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ // Load the buffer
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+
+ // Read the task at the front.
+ let mut task = unsafe { buffer.deref().read(f) };
+
+ match self.flavor {
+ // Steal a batch of tasks from the front at once.
+ Flavor::Fifo => {
+ // Copy the batch from the source to the destination buffer.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(i), task);
+ }
+ }
+ }
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
+ }
+ }
+ }
+ }
+
+ // Try incrementing the front index to steal the batch.
+ if self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(batch_size + 1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ mem::forget(task);
+ return Steal::Retry;
+ }
+
+ dest_b = dest_b.wrapping_add(batch_size);
+ }
+
+ // Steal a batch of tasks from the front one by one.
+ Flavor::Lifo => {
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ mem::forget(task);
+ return Steal::Retry;
+ }
+
+ // Move the front index one step forward.
+ f = f.wrapping_add(1);
+
+ // Repeat the same procedure for the batch steals.
+ for i in 0..batch_size {
+ // We've already got the current front index. Now execute the fence to
+ // synchronize with other threads.
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ batch_size = i;
+ break;
+ }
+
+ // Read the task at the front.
+ let tmp = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it and break from the loop.
+ mem::forget(tmp);
+ batch_size = i;
+ break;
+ }
+
+ // Write the previously stolen task into the destination buffer.
+ unsafe {
+ dest_buffer.write(dest_b, mem::replace(&mut task, tmp));
+ }
+
+ // Move the source front index and the destination back index one step forward.
+ f = f.wrapping_add(1);
+ dest_b = dest_b.wrapping_add(1);
+ }
+
+ // If stealing into a FIFO queue, stolen tasks need to be reversed.
+ if dest.flavor == Flavor::Fifo {
+ for i in 0..batch_size / 2 {
+ unsafe {
+ let i1 = dest_b.wrapping_sub(batch_size - i);
+ let i2 = dest_b.wrapping_sub(i + 1);
+ let t1 = dest_buffer.read(i1);
+ let t2 = dest_buffer.read(i2);
+ dest_buffer.write(i1, t2);
+ dest_buffer.write(i2, t1);
+ }
+ }
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ dest.inner.back.store(dest_b, Ordering::Release);
+
+ // Return with success.
+ Steal::Success(task)
+ }
+
+ pub fn steal_batch_and_pop_with_amount(&self, dest: &Worker, amount: usize) -> Steal {
+ // Load the front index.
+ let mut f = self.inner.front.load(Ordering::Acquire);
+
+ // A SeqCst fence is needed here.
+ //
+ // If the current thread is already pinned (reentrantly), we must manually issue the
+ // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
+ // have to.
+ if epoch::is_pinned() {
+ atomic::fence(Ordering::SeqCst);
+ }
+
+ let guard = &epoch::pin();
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ let len = b.wrapping_sub(f);
+ if len <= 0 {
+ return Steal::Empty;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = cmp::min(amount, MAX_BATCH - 1);
+ dest.reserve(batch_size);
+ let mut batch_size = batch_size as isize;
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ // Load the buffer
+ let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
+
+ // Read the task at the front.
+ let mut task = unsafe { buffer.deref().read(f) };
+
+ match self.flavor {
+ // Steal a batch of tasks from the front at once.
+ Flavor::Fifo => {
+ // Copy the batch from the source to the destination buffer.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(i), task);
+ }
+ }
+ }
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ unsafe {
+ let task = buffer.deref().read(f.wrapping_add(i + 1));
+ dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
+ }
+ }
+ }
+ }
+
+ // Try incrementing the front index to steal the batch.
+ if self
+ .inner
+ .front
+ .compare_exchange(
+ f,
+ f.wrapping_add(batch_size + 1),
+ Ordering::SeqCst,
+ Ordering::Relaxed,
+ )
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ mem::forget(task);
+ return Steal::Retry;
+ }
+
+ dest_b = dest_b.wrapping_add(batch_size);
+ }
+
+ // Steal a batch of tasks from the front one by one.
+ Flavor::Lifo => {
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it.
+ mem::forget(task);
+ return Steal::Retry;
+ }
+
+ // Move the front index one step forward.
+ f = f.wrapping_add(1);
+
+ // Repeat the same procedure for the batch steals.
+ for i in 0..batch_size {
+ // We've already got the current front index. Now execute the fence to
+ // synchronize with other threads.
+ atomic::fence(Ordering::SeqCst);
+
+ // Load the back index.
+ let b = self.inner.back.load(Ordering::Acquire);
+
+ // Is the queue empty?
+ if b.wrapping_sub(f) <= 0 {
+ batch_size = i;
+ break;
+ }
+
+ // Read the task at the front.
+ let tmp = unsafe { buffer.deref().read(f) };
+
+ // Try incrementing the front index to steal the task.
+ if self
+ .inner
+ .front
+ .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
+ .is_err()
+ {
+ // We didn't steal this task, forget it and break from the loop.
+ mem::forget(tmp);
+ batch_size = i;
+ break;
+ }
+
+ // Write the previously stolen task into the destination buffer.
+ unsafe {
+ dest_buffer.write(dest_b, mem::replace(&mut task, tmp));
+ }
+
+ // Move the source front index and the destination back index one step forward.
+ f = f.wrapping_add(1);
+ dest_b = dest_b.wrapping_add(1);
+ }
+
+ // If stealing into a FIFO queue, stolen tasks need to be reversed.
+ if dest.flavor == Flavor::Fifo {
+ for i in 0..batch_size / 2 {
+ unsafe {
+ let i1 = dest_b.wrapping_sub(batch_size - i);
+ let i2 = dest_b.wrapping_sub(i + 1);
+ let t1 = dest_buffer.read(i1);
+ let t2 = dest_buffer.read(i2);
+ dest_buffer.write(i1, t2);
+ dest_buffer.write(i2, t1);
+ }
+ }
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
+ // races because it doesn't understand fences.
+ dest.inner.back.store(dest_b, Ordering::Release);
+
+ // Return with success.
+ Steal::Success(task)
+ }
+}
+
+impl Clone for Stealer {
+ fn clone(&self) -> Stealer {
+ Stealer {
+ inner: self.inner.clone(),
+ flavor: self.flavor,
+ }
+ }
+}
+
+impl fmt::Debug for Stealer {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad("Stealer { .. }")
+ }
+}
+
+// Bits indicating the state of a slot:
+// * If a task has been written into the slot, `WRITE` is set.
+// * If a task has been read from the slot, `READ` is set.
+// * If the block is being destroyed, `DESTROY` is set.
+const WRITE: usize = 1;
+const READ: usize = 2;
+const DESTROY: usize = 4;
+
+// Each block covers one "lap" of indices.
+const LAP: usize = 64;
+// The maximum number of values a block can hold.
+const BLOCK_CAP: usize = LAP - 1;
+// How many lower bits are reserved for metadata.
+const SHIFT: usize = 1;
+// Indicates that the block is not the last one.
+const HAS_NEXT: usize = 1;
+
+/// A slot in a block.
+struct Slot {
+ /// The task.
+ task: UnsafeCell>,
+
+ /// The state of the slot.
+ state: AtomicUsize,
+}
+
+impl Slot {
+ /// Waits until a task is written into the slot.
+ fn wait_write(&self) {
+ let backoff = Backoff::new();
+ while self.state.load(Ordering::Acquire) & WRITE == 0 {
+ backoff.snooze();
+ }
+ }
+}
+
+/// A block in a linked list.
+///
+/// Each block in the list can hold up to `BLOCK_CAP` values.
+struct Block {
+ /// The next block in the linked list.
+ next: AtomicPtr>,
+
+ /// Slots for values.
+ slots: [Slot; BLOCK_CAP],
+}
+
+impl Block {
+ /// Creates an empty block that starts at `start_index`.
+ fn new() -> Block {
+ unsafe { mem::zeroed() }
+ }
+
+ /// Waits until the next pointer is set.
+ fn wait_next(&self) -> *mut Block {
+ let backoff = Backoff::new();
+ loop {
+ let next = self.next.load(Ordering::Acquire);
+ if !next.is_null() {
+ return next;
+ }
+ backoff.snooze();
+ }
+ }
+
+ /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
+ unsafe fn destroy(this: *mut Block, count: usize) {
+ // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
+ // begun destruction of the block.
+ for i in (0..count).rev() {
+ let slot = (*this).slots.get_unchecked(i);
+
+ // Mark the `DESTROY` bit if a thread is still using the slot.
+ if slot.state.load(Ordering::Acquire) & READ == 0
+ && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
+ {
+ // If a thread is still using the slot, it will continue destruction of the block.
+ return;
+ }
+ }
+
+ // No thread is using the block, now it is safe to destroy it.
+ drop(Box::from_raw(this));
+ }
+}
+
+/// A position in a queue.
+struct Position {
+ /// The index in the queue.
+ index: AtomicUsize,
+
+ /// The block in the linked list.
+ block: AtomicPtr>,
+}
+
+/// An injector queue.
+///
+/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have
+/// a single injector queue, which is the entry point for new tasks.
+///
+/// # Examples
+///
+/// ```
+/// use crossbeam_deque::{Injector, Steal};
+///
+/// let q = Injector::new();
+/// q.push(1);
+/// q.push(2);
+///
+/// assert_eq!(q.steal(), Steal::Success(1));
+/// assert_eq!(q.steal(), Steal::Success(2));
+/// assert_eq!(q.steal(), Steal::Empty);
+/// ```
+pub struct Injector {
+ /// The head of the queue.
+ head: CachePadded>,
+
+ /// The tail of the queue.
+ tail: CachePadded>,
+
+ /// Indicates that dropping a `Injector` may drop values of type `T`.
+ _marker: PhantomData,
+}
+
+unsafe impl Send for Injector {}
+unsafe impl Sync for Injector {}
+
+impl Injector {
+ /// Creates a new injector queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let q = Injector::::new();
+ /// ```
+ pub fn new() -> Injector {
+ let block = Box::into_raw(Box::new(Block::::new()));
+ Injector {
+ head: CachePadded::new(Position {
+ block: AtomicPtr::new(block),
+ index: AtomicUsize::new(0),
+ }),
+ tail: CachePadded::new(Position {
+ block: AtomicPtr::new(block),
+ index: AtomicUsize::new(0),
+ }),
+ _marker: PhantomData,
+ }
+ }
+
+ /// Pushes a task into the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let w = Injector::new();
+ /// w.push(1);
+ /// w.push(2);
+ /// ```
+ pub fn push(&self, task: T) {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.index.load(Ordering::Acquire);
+ let mut block = self.tail.block.load(Ordering::Acquire);
+ let mut next_block = None;
+
+ loop {
+ // Calculate the offset of the index into the block.
+ let offset = (tail >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // If we're going to have to install the next block, allocate it in advance in order to
+ // make the wait for other threads as short as possible.
+ if offset + 1 == BLOCK_CAP && next_block.is_none() {
+ next_block = Some(Box::new(Block::::new()));
+ }
+
+ let new_tail = tail + (1 << SHIFT);
+
+ // Try advancing the tail forward.
+ match self.tail.index.compare_exchange_weak(
+ tail,
+ new_tail,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, install the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next_block = Box::into_raw(next_block.unwrap());
+ let next_index = new_tail.wrapping_add(1 << SHIFT);
+
+ self.tail.block.store(next_block, Ordering::Release);
+ self.tail.index.store(next_index, Ordering::Release);
+ (*block).next.store(next_block, Ordering::Release);
+ }
+
+ // Write the task into the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.task.get().write(ManuallyDrop::new(task));
+ slot.state.fetch_or(WRITE, Ordering::Release);
+
+ return;
+ },
+ Err(t) => {
+ tail = t;
+ block = self.tail.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Steals a task from the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Steal};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ ///
+ /// assert_eq!(q.steal(), Steal::Success(1));
+ /// assert_eq!(q.steal(), Steal::Success(2));
+ /// assert_eq!(q.steal(), Steal::Empty);
+ /// ```
+ pub fn steal(&self) -> Steal {
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head + (1 << SHIFT);
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ }
+ }
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if offset + 1 == BLOCK_CAP {
+ Block::destroy(block, offset);
+ } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset);
+ }
+
+ Steal::Success(task)
+ }
+ }
+
+ /// Steals a batch of tasks and pushes them into a worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ ///
+ /// let w = Worker::new_fifo();
+ /// q.steal_batch(&w);
+ /// assert_eq!(w.pop(), Some(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// ```
+ pub fn steal_batch(&self, dest: &Worker) -> Steal<()> {
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head;
+ let advance;
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate
+ // the right batch size to steal.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(MAX_BATCH);
+ } else {
+ let len = (tail - head) >> SHIFT;
+ // Steal half of the available tasks.
+ advance = ((len + 1) / 2).min(MAX_BATCH);
+ }
+ } else {
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(MAX_BATCH);
+ }
+
+ new_head += advance << SHIFT;
+ let new_offset = offset + advance;
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = new_offset - offset;
+ dest.reserve(batch_size);
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if new_offset == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Copy values from the injector into the destination queue.
+ match dest.flavor {
+ Flavor::Fifo => {
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add(i as isize), task);
+ }
+ }
+
+ Flavor::Lifo => {
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
+ // data races because it doesn't understand fences.
+ dest.inner
+ .back
+ .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if new_offset == BLOCK_CAP {
+ Block::destroy(block, offset);
+ } else {
+ for i in offset..new_offset {
+ let slot = (*block).slots.get_unchecked(i);
+
+ if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset);
+ break;
+ }
+ }
+ }
+
+ Steal::Success(())
+ }
+ }
+
+ /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker.
+ ///
+ /// How many tasks exactly will be stolen is not specified. That said, this method will try to
+ /// steal around half of the tasks in the queue, but also not more than some constant limit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::{Injector, Steal, Worker};
+ ///
+ /// let q = Injector::new();
+ /// q.push(1);
+ /// q.push(2);
+ /// q.push(3);
+ /// q.push(4);
+ ///
+ /// let w = Worker::new_fifo();
+ /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1));
+ /// assert_eq!(w.pop(), Some(2));
+ /// ```
+ pub fn steal_batch_and_pop(&self, dest: &Worker) -> Steal {
+ let mut head;
+ let mut block;
+ let mut offset;
+
+ let backoff = Backoff::new();
+ loop {
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+
+ // Calculate the offset of the index into the block.
+ offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ } else {
+ break;
+ }
+ }
+
+ let mut new_head = head;
+ let advance;
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return Steal::Empty;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(MAX_BATCH + 1);
+ } else {
+ let len = (tail - head) >> SHIFT;
+ // Steal half of the available tasks.
+ advance = ((len + 1) / 2).min(MAX_BATCH + 1);
+ }
+ } else {
+ // We can steal all tasks till the end of the block.
+ advance = (BLOCK_CAP - offset).min(MAX_BATCH + 1);
+ }
+
+ new_head += advance << SHIFT;
+ let new_offset = offset + advance;
+
+ // Try moving the head index forward.
+ if self
+ .head
+ .index
+ .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
+ .is_err()
+ {
+ return Steal::Retry;
+ }
+
+ // Reserve capacity for the stolen batch.
+ let batch_size = new_offset - offset - 1;
+ dest.reserve(batch_size);
+
+ // Get the destination buffer and back index.
+ let dest_buffer = dest.buffer.get();
+ let dest_b = dest.inner.back.load(Ordering::Relaxed);
+
+ unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if new_offset == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ match dest.flavor {
+ Flavor::Fifo => {
+ // Copy values from the injector into the destination queue.
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i + 1);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add(i as isize), task);
+ }
+ }
+
+ Flavor::Lifo => {
+ // Copy values from the injector into the destination queue.
+ for i in 0..batch_size {
+ // Read the task.
+ let slot = (*block).slots.get_unchecked(offset + i + 1);
+ slot.wait_write();
+ let m = slot.task.get().read();
+ let task = ManuallyDrop::into_inner(m);
+
+ // Write it into the destination queue.
+ dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
+ }
+ }
+ }
+
+ atomic::fence(Ordering::Release);
+
+ // Update the back index in the destination queue.
+ //
+ // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
+ // data races because it doesn't understand fences.
+ dest.inner
+ .back
+ .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
+
+ // Destroy the block if we've reached the end, or if another thread wanted to destroy
+ // but couldn't because we were busy reading from the slot.
+ if new_offset == BLOCK_CAP {
+ Block::destroy(block, offset);
+ } else {
+ for i in offset..new_offset {
+ let slot = (*block).slots.get_unchecked(i);
+
+ if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset);
+ break;
+ }
+ }
+ }
+
+ Steal::Success(task)
+ }
+ }
+
+ /// Returns `true` if the queue is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Injector;
+ ///
+ /// let q = Injector::new();
+ ///
+ /// assert!(q.is_empty());
+ /// q.push(1);
+ /// assert!(!q.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let head = self.head.index.load(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::SeqCst);
+ head >> SHIFT == tail >> SHIFT
+ }
+}
+
+impl Drop for Injector {
+ fn drop(&mut self) {
+ let mut head = self.head.index.load(Ordering::Relaxed);
+ let mut tail = self.tail.index.load(Ordering::Relaxed);
+ let mut block = self.head.block.load(Ordering::Relaxed);
+
+ // Erase the lower bits.
+ head &= !((1 << SHIFT) - 1);
+ tail &= !((1 << SHIFT) - 1);
+
+ unsafe {
+ // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
+ while head != tail {
+ let offset = (head >> SHIFT) % LAP;
+
+ if offset < BLOCK_CAP {
+ // Drop the task in the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ ManuallyDrop::drop(&mut *(*slot).task.get());
+ } else {
+ // Deallocate the block and move to the next one.
+ let next = (*block).next.load(Ordering::Relaxed);
+ drop(Box::from_raw(block));
+ block = next;
+ }
+
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Deallocate the last remaining block.
+ drop(Box::from_raw(block));
+ }
+ }
+}
+
+impl fmt::Debug for Injector {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.pad("Worker { .. }")
+ }
+}
+
+/// Possible outcomes of a steal operation.
+///
+/// # Examples
+///
+/// There are lots of ways to chain results of steal operations together:
+///
+/// ```
+/// use crossbeam_deque::Steal::{self, Empty, Retry, Success};
+///
+/// let collect = |v: Vec>| v.into_iter().collect::>();
+///
+/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty);
+/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry);
+/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1));
+///
+/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry);
+/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1));
+/// ```
+#[must_use]
+#[derive(PartialEq, Eq, Copy, Clone)]
+pub enum Steal {
+ /// The queue was empty at the time of stealing.
+ Empty,
+
+ /// At least one task was successfully stolen.
+ Success(T),
+
+ /// The steal operation needs to be retried.
+ Retry,
+}
+
+impl Steal {
+ /// Returns `true` if the queue was empty at the time of stealing.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Success(7).is_empty());
+ /// assert!(!Retry::.is_empty());
+ ///
+ /// assert!(Empty::.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ match self {
+ Steal::Empty => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if at least one task was stolen.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Empty::.is_success());
+ /// assert!(!Retry::.is_success());
+ ///
+ /// assert!(Success(7).is_success());
+ /// ```
+ pub fn is_success(&self) -> bool {
+ match self {
+ Steal::Success(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if the steal operation needs to be retried.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert!(!Empty::.is_retry());
+ /// assert!(!Success(7).is_retry());
+ ///
+ /// assert!(Retry::.is_retry());
+ /// ```
+ pub fn is_retry(&self) -> bool {
+ match self {
+ Steal::Retry => true,
+ _ => false,
+ }
+ }
+
+ /// Returns the result of the operation, if successful.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert_eq!(Empty::.success(), None);
+ /// assert_eq!(Retry::.success(), None);
+ ///
+ /// assert_eq!(Success(7).success(), Some(7));
+ /// ```
+ pub fn success(self) -> Option {
+ match self {
+ Steal::Success(res) => Some(res),
+ _ => None,
+ }
+ }
+
+ /// If no task was stolen, attempts another steal operation.
+ ///
+ /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then:
+ ///
+ /// * If the second steal resulted in `Success`, it is returned.
+ /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned.
+ /// * If both resulted in `None`, then `None` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_deque::Steal::{Empty, Retry, Success};
+ ///
+ /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1));
+ /// assert_eq!(Retry.or_else(|| Success(2)), Success(2));
+ ///
+ /// assert_eq!(Retry.or_else(|| Empty), Retry::);
+ /// assert_eq!(Empty.or_else(|| Retry), Retry::);
+ ///
+ /// assert_eq!(Empty.or_else(|| Empty), Empty::);
+ /// ```
+ pub fn or_else(self, f: F) -> Steal
+ where
+ F: FnOnce() -> Steal,
+ {
+ match self {
+ Steal::Empty => f(),
+ Steal::Success(_) => self,
+ Steal::Retry => {
+ if let Steal::Success(res) = f() {
+ Steal::Success(res)
+ } else {
+ Steal::Retry
+ }
+ }
+ }
+ }
+}
+
+impl fmt::Debug for Steal {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self {
+ Steal::Empty => f.pad("Empty"),
+ Steal::Success(_) => f.pad("Success(..)"),
+ Steal::Retry => f.pad("Retry"),
+ }
+ }
+}
+
+impl FromIterator> for Steal {
+ /// Consumes items until a `Success` is found and returns it.
+ ///
+ /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`.
+ /// Otherwise, `Empty` is returned.
+ fn from_iter(iter: I) -> Steal
+ where
+ I: IntoIterator>,
+ {
+ let mut retry = false;
+ for s in iter {
+ match &s {
+ Steal::Empty => {}
+ Steal::Success(_) => return s,
+ Steal::Retry => retry = true,
+ }
+ }
+
+ if retry {
+ Steal::Retry
+ } else {
+ Steal::Empty
+ }
+ }
+}
diff --git a/bastion-executor/src/sleepers.rs b/bastion-executor/src/sleepers.rs
new file mode 100644
index 00000000..4e701295
--- /dev/null
+++ b/bastion-executor/src/sleepers.rs
@@ -0,0 +1,52 @@
+use std::sync::atomic::{AtomicBool, Ordering};
+use std::sync::{Condvar, Mutex};
+
+/// The place where worker threads go to sleep.
+///
+/// Similar to how thread parking works, if a notification comes up while no threads are sleeping,
+/// the next thread that attempts to go to sleep will pick up the notification immediately.
+pub struct Sleepers {
+ /// How many threads are currently a sleep.
+ sleep: Mutex,
+
+ /// A condvar for notifying sleeping threads.
+ wake: Condvar,
+
+ /// Set to `true` if a notification came up while nobody was sleeping.
+ notified: AtomicBool,
+}
+
+impl Sleepers {
+ /// Creates a new `Sleepers`.
+ pub fn new() -> Sleepers {
+ Sleepers {
+ sleep: Mutex::new(0),
+ wake: Condvar::new(),
+ notified: AtomicBool::new(false),
+ }
+ }
+
+ /// Puts the current thread to sleep.
+ pub fn wait(&self) {
+ let mut sleep = self.sleep.lock().unwrap();
+
+ if !self.notified.swap(false, Ordering::SeqCst) {
+ *sleep += 1;
+ let _ = self.wake.wait(sleep).unwrap();
+ }
+ }
+
+ /// Notifies one thread.
+ pub fn notify_one(&self) {
+ if !self.notified.load(Ordering::SeqCst) {
+ let mut sleep = self.sleep.lock().unwrap();
+
+ if *sleep > 0 {
+ *sleep -= 1;
+ self.wake.notify_one();
+ } else {
+ self.notified.store(true, Ordering::SeqCst);
+ }
+ }
+ }
+}
diff --git a/bastion-executor/src/worker.rs b/bastion-executor/src/worker.rs
new file mode 100644
index 00000000..c4eda515
--- /dev/null
+++ b/bastion-executor/src/worker.rs
@@ -0,0 +1,88 @@
+use std::cell::Cell;
+use std::ptr;
+
+use super::pool;
+use lightproc::prelude::*;
+use super::run_queue::Worker;
+
+pub fn current() -> ProcStack {
+ get_proc_stack(|proc| proc.clone())
+ .expect("`proc::current()` called outside the context of the proc")
+}
+
+thread_local! {
+ static STACK: Cell<*const ProcStack> = Cell::new(ptr::null_mut());
+}
+
+pub(crate) fn set_stack(stack: *const ProcStack, f: F) -> R
+ where
+ F: FnOnce() -> R,
+{
+ struct ResetStack<'a>(&'a Cell<*const ProcStack>);
+
+ impl Drop for ResetStack<'_> {
+ fn drop(&mut self) {
+ self.0.set(ptr::null());
+ }
+ }
+
+ STACK.with(|st| {
+ st.set(stack);
+ let _guard = ResetStack(st);
+
+ f()
+ })
+}
+
+pub(crate) fn get_proc_stack(f: F) -> Option
+ where
+ F: FnOnce(&ProcStack) -> R,
+{
+ let res = STACK.try_with(|st| unsafe {
+ st.get().as_ref().map(f)
+ });
+
+ match res {
+ Ok(Some(val)) => Some(val),
+ Ok(None) | Err(_) => None,
+ }
+}
+
+thread_local! {
+ static IS_WORKER: Cell = Cell::new(false);
+ static QUEUE: Cell