参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例 1:
- 输入:n = 4
- 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
- 解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
- 输入:n = 1
- 输出:[["Q"]]
如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。
都知道n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二位矩阵还会有点不知所措。
首先来看一下皇后们的约束条件:
- 不能同行
- 不能同列
- 不能同斜线
确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。
下面我用一个3 * 3 的棋牌,将搜索过程抽象为一颗树,如图:
从图中,可以看出,二维矩阵中矩阵的高就是这颗树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这颗树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
按照我总结的如下回溯模板,我们来依次分析:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
- 递归函数参数
我依然是定义全局变量二维数组result来记录最终结果。
参数n是棋牌的大小,然后用row来记录当前遍历到棋盘的第几层了。
代码如下:
vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
- 递归终止条件
可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。
代码如下:
if (row == n) {
result.push_back(chessboard);
return;
}
- 单层搜索的逻辑
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
代码如下:
for (int col = 0; col < n; col++) {
if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
chessboard[row][col] = 'Q'; // 放置皇后
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.'; // 回溯,撤销皇后
}
}
- 验证棋牌是否合法
按照如下标准去重:
- 不能同行
- 不能同列
- 不能同斜线 (45度和135度角)
代码如下:
bool isValid(int row, int col, vector<string>& chessboard, int n) {
int count = 0;
// 检查列
for (int i = 0; i < row; i++) { // 这是一个剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查 45度角是否有皇后
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查 135度角是否有皇后
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
在这份代码中,细心的同学可以发现为什么没有在同行进行检查呢?
因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。
那么按照这个模板不难写出如下C++代码:
class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋牌的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
if (row == n) {
result.push_back(chessboard);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
chessboard[row][col] = 'Q'; // 放置皇后
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.'; // 回溯,撤销皇后
}
}
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
int count = 0;
// 检查列
for (int i = 0; i < row; i++) { // 这是一个剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查 45度角是否有皇后
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查 135度角是否有皇后
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
public:
vector<vector<string>> solveNQueens(int n) {
result.clear();
std::vector<std::string> chessboard(n, std::string(n, '.'));
backtracking(n, 0, chessboard);
return result;
}
};
可以看出,除了验证棋盘合法性的代码,省下来部分就是按照回溯法模板来的。
本题是我们解决棋盘问题的第一道题目。
如果从来没有接触过N皇后问题的同学看着这样的题会感觉无从下手,可能知道要用回溯法,但也不知道该怎么去搜。
这里我明确给出了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了。
大家可以在仔细体会体会!
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
if not n: return []
board = [['.'] * n for _ in range(n)]
res = []
def isVaild(board,row, col):
#判断同一列是否冲突
for i in range(len(board)):
if board[i][col] == 'Q':
return False
# 判断左上角是否冲突
i = row -1
j = col -1
while i>=0 and j>=0:
if board[i][j] == 'Q':
return False
i -= 1
j -= 1
# 判断右上角是否冲突
i = row - 1
j = col + 1
while i>=0 and j < len(board):
if board[i][j] == 'Q':
return False
i -= 1
j += 1
return True
def backtracking(board, row, n):
# 如果走到最后一行,说明已经找到一个解
if row == n:
temp_res = []
for temp in board:
temp_str = "".join(temp)
temp_res.append(temp_str)
res.append(temp_res)
for col in range(n):
if not isVaild(board, row, col):
continue
board[row][col] = 'Q'
backtracking(board, row+1, n)
board[row][col] = '.'
backtracking(board, 0, n)
return res
class Solution {
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {
char[][] chessboard = new char[n][n];
for (char[] c : chessboard) {
Arrays.fill(c, '.');
}
backTrack(n, 0, chessboard);
return res;
}
public void backTrack(int n, int row, char[][] chessboard) {
if (row == n) {
res.add(Array2List(chessboard));
return;
}
for (int col = 0;col < n; ++col) {
if (isValid (row, col, n, chessboard)) {
chessboard[row][col] = 'Q';
backTrack(n, row+1, chessboard);
chessboard[row][col] = '.';
}
}
}
public List Array2List(char[][] chessboard) {
List<String> list = new ArrayList<>();
for (char[] c : chessboard) {
list.add(String.copyValueOf(c));
}
return list;
}
public boolean isValid(int row, int col, int n, char[][] chessboard) {
// 检查列
for (int i=0; i<row; ++i) { // 相当于剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查45度对角线
for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查135度对角线
for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
}
import "strings"
var res [][]string
func isValid(board [][]string, row, col int) (res bool){
n := len(board)
for i:=0; i < row; i++ {
if board[i][col] == "Q" {
return false
}
}
for i := 0; i < n; i++{
if board[row][i] == "Q" {
return false
}
}
for i ,j := row, col; i >= 0 && j >=0 ; i, j = i - 1, j- 1{
if board[i][j] == "Q"{
return false
}
}
for i, j := row, col; i >=0 && j < n; i,j = i-1, j+1 {
if board[i][j] == "Q" {
return false
}
}
return true
}
func backtrack(board [][]string, row int) {
size := len(board)
if row == size{
temp := make([]string, size)
for i := 0; i<size;i++{
temp[i] = strings.Join(board[i],"")
}
res =append(res,temp)
return
}
for col := 0; col < size; col++ {
if !isValid(board, row, col){
continue
}
board[row][col] = "Q"
backtrack(board, row+1)
board[row][col] = "."
}
}
func solveNQueens(n int) [][]string {
res = [][]string{}
board := make([][]string, n)
for i := 0; i < n; i++{
board[i] = make([]string, n)
}
for i := 0; i < n; i++{
for j := 0; j<n;j++{
board[i][j] = "."
}
}
backtrack(board, 0)
return res
}
var solveNQueens = function(n) {
function isValid(row, col, chessBoard, n) {
for(let i = 0; i < row; i++) {
if(chessBoard[i][col] === 'Q') {
return false
}
}
for(let i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
if(chessBoard[i][j] === 'Q') {
return false
}
}
for(let i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if(chessBoard[i][j] === 'Q') {
return false
}
}
return true
}
function transformChessBoard(chessBoard) {
let chessBoardBack = []
chessBoard.forEach(row => {
let rowStr = ''
row.forEach(value => {
rowStr += value
})
chessBoardBack.push(rowStr)
})
return chessBoardBack
}
let result = []
function backtracing(row,chessBoard) {
if(row === n) {
result.push(transformChessBoard(chessBoard))
return
}
for(let col = 0; col < n; col++) {
if(isValid(row, col, chessBoard, n)) {
chessBoard[row][col] = 'Q'
backtracing(row + 1,chessBoard)
chessBoard[row][col] = '.'
}
}
}
let chessBoard = new Array(n).fill([]).map(() => new Array(n).fill('.'))
backtracing(0,chessBoard)
return result
};