参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
这不仅仅是一道好题,也展现出计算机的思考方式
根据 逆波兰表示法,求表达式的值。
有效的运算符包括 + , - , * , / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
- 输入: ["2", "1", "+", "3", " * "]
- 输出: 9
- 解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
- 输入: ["4", "13", "5", "/", "+"]
- 输出: 6
- 解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
-
输入: ["10", "6", "9", "3", "+", "-11", " * ", "/", " * ", "17", "+", "5", "+"]
-
输出: 22
-
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
逆波兰表达式:是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
-
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
-
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
在上一篇文章中1047.删除字符串中的所有相邻重复项提到了 递归就是用栈来实现的。
所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后续遍历的方式把二叉树序列化了,就可以了。
在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和1047.删除字符串中的所有相邻重复项中的对对碰游戏是不是就非常像了。
相信看完动画大家应该知道,这和1047. 删除字符串中的所有相邻重复项是差不错的,只不过本题不要相邻元素做消除了,而是做运算!
C++代码如下:
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> st;
for (int i = 0; i < tokens.size(); i++) {
if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
int num1 = st.top();
st.pop();
int num2 = st.top();
st.pop();
if (tokens[i] == "+") st.push(num2 + num1);
if (tokens[i] == "-") st.push(num2 - num1);
if (tokens[i] == "*") st.push(num2 * num1);
if (tokens[i] == "/") st.push(num2 / num1);
} else {
st.push(stoi(tokens[i]));
}
}
int result = st.top();
st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
return result;
}
};
我们习惯看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。
例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算法,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法,你说麻不麻烦!
那么将中缀表达式,转化为后缀表达式之后:["4", "13", "5", "/", "+"] ,就不一样了,计算机可以利用栈里顺序处理,不需要考虑优先级了。也不用回退了, 所以后缀表达式对计算机来说是非常友好的。
可以说本题不仅仅是一道好题,也展现出计算机的思考方式。
在1970年代和1980年代,惠普在其所有台式和手持式计算器中都使用了RPN(后缀表达式),直到2020年代仍在某些模型中使用了RPN。
参考维基百科如下:
During the 1970s and 1980s, Hewlett-Packard used RPN in all of their desktop and hand-held calculators, and continued to use it in some models into the 2020s.
java:
public class EvalRPN {
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList();
for (String token : tokens) {
char c = token.charAt(0);
if (!isOpe(token)) {
stack.addFirst(stoi(token));
} else if (c == '+') {
stack.push(stack.pop() + stack.pop());
} else if (c == '-') {
stack.push(- stack.pop() + stack.pop());
} else if (c == '*') {
stack.push( stack.pop() * stack.pop());
} else {
int num1 = stack.pop();
int num2 = stack.pop();
stack.push( num2/num1);
}
}
return stack.pop();
}
private boolean isOpe(String s) {
return s.length() == 1 && s.charAt(0) <'0' || s.charAt(0) >'9';
}
private int stoi(String s) {
return Integer.valueOf(s);
}
public static void main(String[] args) {
new EvalRPN().evalRPN(new String[] {"10","6","9","3","+","-11","*","/","*","17","+","5","+"});
}
}
Go:
func evalRPN(tokens []string) int {
stack := []int{}
for _, token := range tokens {
val, err := strconv.Atoi(token)
if err == nil {
stack = append(stack, val)
} else {
num1, num2 := stack[len(stack)-2], stack[(len(stack))-1]
stack = stack[:len(stack)-2]
switch token {
case "+":
stack = append(stack, num1+num2)
case "-":
stack = append(stack, num1-num2)
case "*":
stack = append(stack, num1*num2)
case "/":
stack = append(stack, num1/num2)
}
}
}
return stack[0]
}
javaScript:
/**
* @param {string[]} tokens
* @return {number}
*/
var evalRPN = function(tokens) {
const s = new Map([
["+", (a, b) => a * 1 + b * 1],
["-", (a, b) => b - a],
["*", (a, b) => b * a],
["/", (a, b) => (b / a) | 0]
]);
const stack = [];
for (const i of tokens) {
if(!s.has(i)) {
stack.push(i);
continue;
}
stack.push(s.get(i)(stack.pop(),stack.pop()))
}
return stack.pop();
};
python3
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for item in tokens:
if item not in {"+", "-", "*", "/"}:
stack.append(item)
else:
first_num, second_num = stack.pop(), stack.pop()
stack.append(
int(eval(f'{second_num} {item} {first_num}')) # 第一个出来的在运算符后面
)
return int(stack.pop()) # 如果一开始只有一个数,那么会是字符串形式的
Swift:
func evalRPN(_ tokens: [String]) -> Int {
var stack = [Int]()
for c in tokens {
let v = Int(c)
if let num = v {
// 遇到数字直接入栈
stack.append(num)
} else {
// 遇到运算符, 取出栈顶两元素计算, 结果压栈
var res: Int = 0
let num2 = stack.popLast()!
let num1 = stack.popLast()!
switch c {
case "+":
res = num1 + num2
case "-":
res = num1 - num2
case "*":
res = num1 * num2
case "/":
res = num1 / num2
default:
break
}
stack.append(res)
}
}
return stack.last!
}