Skip to content

Latest commit

 

History

History
452 lines (355 loc) · 13.6 KB

0216.组合总和III.md

File metadata and controls

452 lines (355 loc) · 13.6 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

别看本篇选的是组合总和III,而不是组合总和,本题和上一篇回溯算法:求组合问题!相比难度刚刚好!

216.组合总和III

力扣题目链接

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:

  • 所有数字都是正整数。
  • 解集不能包含重复的组合。 

示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]

示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]

思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。

相对于77. 组合,无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。

想到这一点了,做过77. 组合之后,本题是简单一些了。

本题k相当于了树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:

216.组合总和III

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

回溯三部曲

  • 确定递归函数参数

77. 组合一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。

所以代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)

其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。

还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

  • 确定终止条件

什么时候终止呢?

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

所以 终止代码如下:

if (path.size() == k) {
    if (sum == targetSum) result.push_back(path);
    return; // 如果path.size() == k 但sum != targetSum 直接返回
}
  • 单层搜索过程

本题和77. 组合区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9

如图: 216.组合总和III

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

代码如下:

for (int i = startIndex; i <= 9; i++) {
    sum += i;
    path.push_back(i);
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!

参照关于回溯算法,你该了解这些!中的模板,不难写出如下C++代码:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

剪枝

这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。

如图: 216.组合总和III1

已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方一定是在递归终止的地方剪,剪枝代码如下:

if (sum > targetSum) { // 剪枝操作
    return;
}

回溯算法:组合问题再剪剪枝 一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。

最后C++代码如下:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (sum > targetSum) { // 剪枝操作
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

总结

开篇就介绍了本题与回溯算法:求组合问题!的区别,相对来说加了元素总和的限制,如果做完回溯算法:求组合问题!再做本题在合适不过。

分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。

相信做完本题,大家对组合问题应该有初步了解了。

其他语言版本

Java

模板方法

class Solution {
	List<List<Integer>> result = new ArrayList<>();
	LinkedList<Integer> path = new LinkedList<>();

	public List<List<Integer>> combinationSum3(int k, int n) {
		backTracking(n, k, 1, 0);
		return result;
	}

	private void backTracking(int targetSum, int k, int startIndex, int sum) {
		// 减枝
		if (sum > targetSum) {
			return;
		}

		if (path.size() == k) {
			if (sum == targetSum) result.add(new ArrayList<>(path));
			return;
		}
		
		// 减枝 9 - (k - path.size()) + 1
		for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) {
			path.add(i);
			sum += i;
			backTracking(targetSum, k, i + 1, sum);
			//回溯
			path.removeLast();
			//回溯
			sum -= i;
		}
	}
}

其他方法

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> list = new ArrayList<>();

    public List<List<Integer>> combinationSum3(int k, int n) {
        res.clear();
        list.clear();
        backtracking(k, n, 9);
        return res;
    }

    private void backtracking(int k, int n, int maxNum) {
        if (k == 0 && n == 0) {
            res.add(new ArrayList<>(list));
            return;
        }

        // 因为不能重复,并且单个数字最大值是maxNum,所以sum最大值为
        // (maxNum + (maxNum - 1) + ... + (maxNum - k + 1)) == k * maxNum - k*(k - 1) / 2
        if (maxNum == 0
                || n > k * maxNum - k * (k - 1) / 2
                || n < (1 + k) * k / 2) {
            return;
        }
        list.add(maxNum);
        backtracking(k - 1, n - maxNum, maxNum - 1);
        list.remove(list.size() - 1);
        backtracking(k, n, maxNum - 1);
    }

}

Python

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        res = []  #存放结果集
        path = []  #符合条件的结果
        def findallPath(n,k,sum,startIndex):
            if sum > n: return  #剪枝操作
            if sum == n and len(path) == k:  #如果path.size() == k 但sum != n 直接返回
                return res.append(path[:])
            for i in range(startIndex,9-(k-len(path))+2):  #剪枝操作
                path.append(i)
                sum += i 
                findallPath(n,k,sum,i+1)  #注意i+1调整startIndex
                sum -= i  #回溯
                path.pop()  #回溯
        
        findallPath(n,k,0,1)
        return res

Go:

回溯+减枝

func combinationSum3(k int, n int) [][]int {
    var track []int// 遍历路径
    var result [][]int// 存放结果集
    backTree(n,k,1,&track,&result)
    return result
}
func backTree(n,k,startIndex int,track *[]int,result *[][]int){
    if len(*track)==k{
        var sum int
        tmp:=make([]int,k)
        for k,v:=range *track{
            sum+=v
            tmp[k]=v
        }
        if sum==n{
            *result=append(*result,tmp)
        }
        return
    }
    for i:=startIndex;i<=9-(k-len(*track))+1;i++{//减枝(k-len(*track)表示还剩多少个可填充的元素)
        *track=append(*track,i)//记录路径
        backTree(n,k,i+1,track,result)//递归
        *track=(*track)[:len(*track)-1]//回溯
    }
}

javaScript:

// 等差数列
var maxV = k => k * (9 + 10 - k) / 2;
var minV = k => k * (1 + k) / 2;
var combinationSum3 = function(k, n) {
    if (k > 9 || k < 1) return [];
    // if (n > maxV(k) || n < minV(k)) return [];
    // if (n === maxV(k)) return [Array.from({length: k}).map((v, i) => 9 - i)];
    // if (n === minV(k)) return [Array.from({length: k}).map((v, i) => i + 1)];

    const res = [], path = [];
    backtracking(k, n, 1, 0);
    return res;
    function backtracking(k, n, i, sum){
        const len = path.length;
        if (len > k || sum > n) return;
        if (maxV(k - len) < n - sum) return;
        if (minV(k - len) > n - sum) return; 

        if(len === k && sum == n) {
            res.push(Array.from(path));
            return;
        }

        const min = Math.min(n - sum, 9 + len - k + 1);

        for(let a = i; a <= min; a++) {
            path.push(a);
            sum += a;
            backtracking(k, n, a + 1, sum);
            path.pop();
            sum -= a;
        }
    }
};

C:

int* path;
int pathTop;
int** ans;
int ansTop;
int getPathSum() {
    int i;
    int sum = 0;
    for(i = 0; i < pathTop; i++) {
        sum += path[i];
    }
    return sum;
}

void backtracking(int targetSum, int k, int sum, int startIndex) {
    if(pathTop == k) {
        if(sum == targetSum) {
            int* tempPath = (int*)malloc(sizeof(int) * k);
            int j;
            for(j = 0; j < k; j++) 
                tempPath[j] = path[j];
            ans[ansTop++] = tempPath;
        }
        // 如果path.size() == k 但sum != targetSum 直接返回
        return;
    }
    int i;
    //从startIndex开始遍历,一直遍历到9
    for (i = startIndex; i <= 9; i++) {
        sum += i; // 处理
        path[pathTop++] = i; // 处理
        backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
        sum -= i; // 回溯
        pathTop--;; // 回溯
    }
}

int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes){
    //初始化辅助变量
    path = (int*)malloc(sizeof(int) * k);
    ans = (int**)malloc(sizeof(int*) * 20);
    pathTop = ansTop = 0;

    backtracking(n, k, 0, 1);

    //设置返回的二维数组中元素个数为ansTop
    *returnSize = ansTop;
    //设置二维数组中每个元素个数的大小为k
    *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
    int i;
    for(i = 0; i < ansTop; i++) {
        (*returnColumnSizes)[i] = k;
    }
    return ans;
}