diff --git a/Orange/widgets/data/owpreprocess.py b/Orange/widgets/data/owpreprocess.py index b80143d2072..981918e784b 100644 --- a/Orange/widgets/data/owpreprocess.py +++ b/Orange/widgets/data/owpreprocess.py @@ -1,27 +1,22 @@ import sys -import bisect -import contextlib -import warnings from collections import OrderedDict import pkg_resources import numpy from AnyQt.QtWidgets import ( - QWidget, QButtonGroup, QGroupBox, QRadioButton, QSlider, QFocusFrame, - QDoubleSpinBox, QComboBox, QSpinBox, QListView, QDockWidget, QLabel, - QScrollArea, QVBoxLayout, QHBoxLayout, QFormLayout, QSpacerItem, - QSizePolicy, QStyle, QStylePainter, QAction, QLabel, - QApplication, QCheckBox + QWidget, QButtonGroup, QGroupBox, QRadioButton, QSlider, + QDoubleSpinBox, QComboBox, QSpinBox, QListView, QLabel, + QScrollArea, QVBoxLayout, QHBoxLayout, QFormLayout, + QSizePolicy, QApplication, QCheckBox ) from AnyQt.QtGui import ( - QCursor, QIcon, QPainter, QPixmap, QStandardItemModel, QStandardItem, - QDrag, QKeySequence + QIcon, QStandardItemModel, QStandardItem ) from AnyQt.QtCore import ( - Qt, QObject, QEvent, QSize, QModelIndex, QMimeData, QTimer + Qt, QEvent, QSize, QMimeData, QTimer ) from AnyQt.QtCore import pyqtSignal as Signal, pyqtSlot as Slot @@ -34,7 +29,6 @@ from Orange.widgets import widget, gui, settings from Orange.widgets.utils.overlay import OverlayWidget from Orange.widgets.utils.sql import check_sql_input -from Orange.util import Reprable from Orange.widgets.data.utils.preprocess import ( BaseEditor, blocked, StandardItemModel, DescriptionRole, @@ -271,9 +265,9 @@ class ImputeEditor(BaseEditor): Imputers = { NoImputation: (None, {}), -# Constant: (None, {"value": 0}) + # Constant: (None, {"value": 0}) Average: (preprocess.impute.Average(), {}), -# Model: (preprocess.impute.Model, {}), + # Model: (preprocess.impute.Model, {}), Random: (preprocess.impute.Random(), {}), DropRows: (None, {}) } @@ -1175,7 +1169,7 @@ def apply(self): self.error() try: data = preprocessor(self.data) - except ValueError as e: + except (ValueError, ZeroDivisionError) as e: self.error(str(e)) return else: @@ -1258,4 +1252,3 @@ def test_main(argv=sys.argv): if __name__ == "__main__": sys.exit(test_main()) - diff --git a/Orange/widgets/data/tests/test_owpreprocess.py b/Orange/widgets/data/tests/test_owpreprocess.py index 8a49125167e..a96acbbaaca 100644 --- a/Orange/widgets/data/tests/test_owpreprocess.py +++ b/Orange/widgets/data/tests/test_owpreprocess.py @@ -9,7 +9,7 @@ from Orange.preprocess import discretize, impute, fss, score from Orange.widgets.data import owpreprocess from Orange.widgets.data.owpreprocess import OWPreprocess -from Orange.widgets.tests.base import WidgetTest +from Orange.widgets.tests.base import WidgetTest, datasets class TestOWPreprocess(WidgetTest): @@ -44,6 +44,20 @@ def test_normalize(self): np.testing.assert_allclose(output.X.mean(0), 0, atol=1e-7) np.testing.assert_allclose(output.X.std(0), 1, atol=1e-7) + def test_data_column_nans(self): + """ + ZeroDivisonError - Weights sum to zero, can't be normalized + In case when all rows in a column are NaN then it throws that error. + GH-2064 + """ + table = datasets.data_one_column_nans() + saved = {"preprocessors": [("orange.preprocess.scale", + {"center": Scale.CenteringType.Mean, + "scale": Scale.ScalingType.Std})]} + model = self.widget.load(saved) + self.widget.set_model(model) + self.send_signal("Data", table) + # Test for editors class TestDiscretizeEditor(WidgetTest): diff --git a/Orange/widgets/tests/base.py b/Orange/widgets/tests/base.py index ec2e80c9548..e700ae2ffe9 100644 --- a/Orange/widgets/tests/base.py +++ b/Orange/widgets/tests/base.py @@ -15,7 +15,7 @@ from Orange.classification.base_classification import ( LearnerClassification, ModelClassification ) -from Orange.data import Table +from Orange.data import Table, Domain, DiscreteVariable, ContinuousVariable from Orange.modelling import Fitter from Orange.preprocess import RemoveNaNColumns, Randomize from Orange.preprocess.preprocess import PreprocessorList @@ -709,3 +709,26 @@ def missing_data_3(cls): data : Orange.data.Table """ return Table(cls.path("missing_data_3.tab")) + + @classmethod + def data_one_column_nans(cls): + """ + Data set with two continuous features and one discrete. One continuous + columns has missing values (NaN). + + Returns + ------- + data : Orange.data.Table + """ + table = Table( + Domain( + [ContinuousVariable("a"), + ContinuousVariable("b"), + DiscreteVariable("c", values=["y", "n"])] + ), + list(zip( + [42.48, 16.84, 15.23, 23.8], + ["", "", "", ""], + "ynyn" + ))) + return table