-
Notifications
You must be signed in to change notification settings - Fork 1k
/
main_impl.h
267 lines (226 loc) · 9.78 KB
/
main_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/***********************************************************************
* Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_SCHNORRSIG_MAIN_H
#define SECP256K1_MODULE_SCHNORRSIG_MAIN_H
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_schnorrsig.h"
#include "../../hash.h"
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */
static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x46615b35ul;
sha->s[1] = 0xf4bfbff7ul;
sha->s[2] = 0x9f8dc671ul;
sha->s[3] = 0x83627ab3ul;
sha->s[4] = 0x60217180ul;
sha->s[5] = 0x57358661ul;
sha->s[6] = 0x21a29e54ul;
sha->s[7] = 0x68b07b4cul;
sha->bytes = 64;
}
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */
static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x24dd3219ul;
sha->s[1] = 0x4eba7e70ul;
sha->s[2] = 0xca0fabb9ul;
sha->s[3] = 0x0fa3166dul;
sha->s[4] = 0x3afbe4b1ul;
sha->s[5] = 0x4c44df97ul;
sha->s[6] = 0x4aac2739ul;
sha->s[7] = 0x249e850aul;
sha->bytes = 64;
}
/* algo argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340
* by using the correct tagged hash function. */
static const unsigned char bip340_algo[13] = "BIP0340/nonce";
static const unsigned char schnorrsig_extraparams_magic[4] = SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC;
static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) {
secp256k1_sha256 sha;
unsigned char masked_key[32];
int i;
if (algo == NULL) {
return 0;
}
if (data != NULL) {
secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha);
secp256k1_sha256_write(&sha, data, 32);
secp256k1_sha256_finalize(&sha, masked_key);
for (i = 0; i < 32; i++) {
masked_key[i] ^= key32[i];
}
} else {
/* Precomputed TaggedHash("BIP0340/aux", 0x0000...00); */
static const unsigned char ZERO_MASK[32] = {
84, 241, 105, 207, 201, 226, 229, 114,
116, 128, 68, 31, 144, 186, 37, 196,
136, 244, 97, 199, 11, 94, 165, 220,
170, 247, 175, 105, 39, 10, 165, 20
};
for (i = 0; i < 32; i++) {
masked_key[i] = key32[i] ^ ZERO_MASK[i];
}
}
/* Tag the hash with algo which is important to avoid nonce reuse across
* algorithms. If this nonce function is used in BIP-340 signing as defined
* in the spec, an optimized tagging implementation is used. */
if (algolen == sizeof(bip340_algo)
&& secp256k1_memcmp_var(algo, bip340_algo, algolen) == 0) {
secp256k1_nonce_function_bip340_sha256_tagged(&sha);
} else {
secp256k1_sha256_initialize_tagged(&sha, algo, algolen);
}
/* Hash masked-key||pk||msg using the tagged hash as per the spec */
secp256k1_sha256_write(&sha, masked_key, 32);
secp256k1_sha256_write(&sha, xonly_pk32, 32);
secp256k1_sha256_write(&sha, msg, msglen);
secp256k1_sha256_finalize(&sha, nonce32);
return 1;
}
const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340 = nonce_function_bip340;
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */
static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x9cecba11ul;
sha->s[1] = 0x23925381ul;
sha->s[2] = 0x11679112ul;
sha->s[3] = 0xd1627e0ful;
sha->s[4] = 0x97c87550ul;
sha->s[5] = 0x003cc765ul;
sha->s[6] = 0x90f61164ul;
sha->s[7] = 0x33e9b66aul;
sha->bytes = 64;
}
static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
{
unsigned char buf[32];
secp256k1_sha256 sha;
/* tagged hash(r.x, pk.x, msg) */
secp256k1_schnorrsig_sha256_tagged(&sha);
secp256k1_sha256_write(&sha, r32, 32);
secp256k1_sha256_write(&sha, pubkey32, 32);
secp256k1_sha256_write(&sha, msg, msglen);
secp256k1_sha256_finalize(&sha, buf);
/* Set scalar e to the challenge hash modulo the curve order as per
* BIP340. */
secp256k1_scalar_set_b32(e, buf, NULL);
}
static int secp256k1_schnorrsig_sign_internal(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
secp256k1_scalar sk;
secp256k1_scalar e;
secp256k1_scalar k;
secp256k1_gej rj;
secp256k1_ge pk;
secp256k1_ge r;
unsigned char buf[32] = { 0 };
unsigned char pk_buf[32];
unsigned char seckey[32];
int ret = 1;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(sig64 != NULL);
ARG_CHECK(msg != NULL || msglen == 0);
ARG_CHECK(keypair != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_bip340;
}
ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair);
/* Because we are signing for a x-only pubkey, the secret key is negated
* before signing if the point corresponding to the secret key does not
* have an even Y. */
if (secp256k1_fe_is_odd(&pk.y)) {
secp256k1_scalar_negate(&sk, &sk);
}
secp256k1_scalar_get_b32(seckey, &sk);
secp256k1_fe_get_b32(pk_buf, &pk.x);
ret &= !!noncefp(buf, msg, msglen, seckey, pk_buf, bip340_algo, sizeof(bip340_algo), ndata);
secp256k1_scalar_set_b32(&k, buf, NULL);
ret &= !secp256k1_scalar_is_zero(&k);
secp256k1_scalar_cmov(&k, &secp256k1_scalar_one, !ret);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k);
secp256k1_ge_set_gej(&r, &rj);
/* We declassify r to allow using it as a branch point. This is fine
* because r is not a secret. */
secp256k1_declassify(ctx, &r, sizeof(r));
secp256k1_fe_normalize_var(&r.y);
if (secp256k1_fe_is_odd(&r.y)) {
secp256k1_scalar_negate(&k, &k);
}
secp256k1_fe_normalize_var(&r.x);
secp256k1_fe_get_b32(&sig64[0], &r.x);
secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, pk_buf);
secp256k1_scalar_mul(&e, &e, &sk);
secp256k1_scalar_add(&e, &e, &k);
secp256k1_scalar_get_b32(&sig64[32], &e);
secp256k1_memczero(sig64, 64, !ret);
secp256k1_scalar_clear(&k);
secp256k1_scalar_clear(&sk);
memset(seckey, 0, sizeof(seckey));
return ret;
}
int secp256k1_schnorrsig_sign32(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) {
/* We cast away const from the passed aux_rand32 argument since we know the default nonce function does not modify it. */
return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg32, 32, keypair, secp256k1_nonce_function_bip340, (unsigned char*)aux_rand32);
}
int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) {
return secp256k1_schnorrsig_sign32(ctx, sig64, msg32, keypair, aux_rand32);
}
int secp256k1_schnorrsig_sign_custom(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams) {
secp256k1_nonce_function_hardened noncefp = NULL;
void *ndata = NULL;
VERIFY_CHECK(ctx != NULL);
if (extraparams != NULL) {
ARG_CHECK(secp256k1_memcmp_var(extraparams->magic,
schnorrsig_extraparams_magic,
sizeof(extraparams->magic)) == 0);
noncefp = extraparams->noncefp;
ndata = extraparams->ndata;
}
return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg, msglen, keypair, noncefp, ndata);
}
int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) {
secp256k1_scalar s;
secp256k1_scalar e;
secp256k1_gej rj;
secp256k1_ge pk;
secp256k1_gej pkj;
secp256k1_fe rx;
secp256k1_ge r;
unsigned char buf[32];
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(msg != NULL || msglen == 0);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
return 0;
}
secp256k1_scalar_set_b32(&s, &sig64[32], &overflow);
if (overflow) {
return 0;
}
if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
/* Compute e. */
secp256k1_fe_get_b32(buf, &pk.x);
secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, buf);
/* Compute rj = s*G + (-e)*pkj */
secp256k1_scalar_negate(&e, &e);
secp256k1_gej_set_ge(&pkj, &pk);
secp256k1_ecmult(&rj, &pkj, &e, &s);
secp256k1_ge_set_gej_var(&r, &rj);
if (secp256k1_ge_is_infinity(&r)) {
return 0;
}
secp256k1_fe_normalize_var(&r.y);
return !secp256k1_fe_is_odd(&r.y) &&
secp256k1_fe_equal_var(&rx, &r.x);
}
#endif