
Adding Structure to Monoids
thus hopefully ending Haskell’s string type confusion

Mario Blažević
Stilo International plc

blamario@yahoo.com

Abstract
This paper presents the rationale and design of monoid-subclasses.
This Haskell library consists of a collection of type classes that
generalize the interface of several common data types, most im-
portantly those used to represent strings. We demonstrate that the
mathematical theory behind monoid-subclasses can bring substan-
tial practical benefits to the Haskell library ecosystem by general-
izing attoparsec, one of the most popular Haskell parsing libraries.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reusable libraries,Reuse models

General Terms Algorithms, Performance, Design

Keywords Monoids; Cancellative; Generic Programming

1. Introduction
Due to the accidents of history, a newcomer to Haskell wishing to
try some basic string or file manipulations immediately confronts a
bewildering choice of data types to represent a string:

• String has been a part of Haskell from the beginning, and is
the only string type to be baked into the language specification.
For reasons unknown1, but which can be assumed to trace
back to LISP, the same specification refuses to apply any of
the available type-abstraction facilities and declares String to
be synonymous with a linked list of characters [Char]. The
consequences of this decision on the performance of the String
data type trigger a sequence of fixes.2

• ByteString[7] has a history nearly as long. Its predecessor
PackedString was already shipping with Glasgow Haskell
Compiler in 1996. In 2003 the first widely used Haskell appli-
cation Darcs needed more performance for its text file manip-
ulations, so it adapted PackedString into FastPackedString.

1 There is no mention of any decision-making on String in [13] at all.
2 Theoretically speaking, a Haskell list need not be implemented as a linked
list. In practice, GHC does an admirable job of optimizing lists and String
in particular, but they still cost 20-40 bytes per character [12] and their
concatenation complexity is still O(n).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’13, September 23–24, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2383-3/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503778.2503785

The data type was finally extracted into a standalone library in
2005. At the same time it was renamed to ByteString in order
to clarify that it represents sequences of bytes rather than of
characters.
A ByteString value is represented as a pointer into an array and
thus requires much less memory than String. In addition, many
ByteString operations are potentially subject to de-forestation
optimization, thus avoiding the construction of the intermediate
data structures.
• Lazy ByteString is an alternative implementation of the afore-

mentioned strict ByteString with different performance charac-
teristics, dating from 2006. The two types share the same home
library, the same user interface, and much of the implementa-
tion code. They are not compatible, however, merely convert-
ible with no loss of information.
• Text[12] was implemented in 2009. Its low-level representa-

tion largely follows ByteString, the most important difference
being that it stores Unicode characters instead of bytes. This
means that it can be used as a replacement for String, usually
providing much better performance.
• Lazy Text is related to the strict Text described above in much

the same way lazy ByteString is related to strict ByteString.
Again, the two types are convertible but not compatible.

The last data type in this list in particular is superior in virtually ev-
ery respect to the original String. Not only does it perform better,
but it can be treated as an opaque data type. Its low-level repre-
sentation and the operations’ implementation could be improved or
completely replaced in future with little need to change the client
code.3

The remainder of the paper will use the capitalized String to
refer to the original type String = [Char]. All other uses of
the term “string type” will refer to any data type used to represent
strings in general.

1.1 The string compatibility problem
The string type situation in Haskell is not a problem only for
beginners. Even experienced Haskell developers must confront this
choice every time they start a new library or application. The
problem is not simply in choosing the optimal string type for the
problem at hand, it is to choose the best type for interfacing with
other Haskell libraries that the new code will end up using, or being
used by. There are two basic answers to the interfacing problem:

1.1.1 Conversion
When developing an application or a framework, one straightfor-
ward answer that can be given is: pick one central string type,

3 The low-level details are available through the Data.Text.Internal and
Data.Text.Lazy.Internal modules, whose use is warned against.

preferably a well-performing one, and stick with it. If any libraries
used by the application expect a different string type, convert to and
from the central representation as necessary.

This central type solution can work for an occasional library
as well. In some cases there is a clear performance winner among
the string types, whose advantage overrides the potential cost of
conversion. For most libraries and their authors, however, compat-
ibility with other libraries is more important than the performance
gains they could wring from the choice of any particular string type.

1.1.2 Abstraction
Different libraries have incorporated different solutions to this com-
patibility problem. Some libraries go so far as to duplicate (or
worse) much of their code in order to accommodate different string
types.4

Another approach is to declare a type class and to move all the
type-specific code into its instances. In fact, all the candidate string
types are already instances of the standard type classes Eq, Ord,
IsString, and Monoid. This much is already sufficient to generi-
cally implement any code that needs only create string values, com-
pare them, or concatenate them together.

For libraries that need to examine a given string and take it apart,
these standard type classes are unfortunately not sufficient. They
must declare additional type classes with methods they need. For
example, Parsec (since version 3) declares

class Monad m ⇒ Stream s m t | s → t where
uncons :: s → m (Maybe (t , s))

with instances for lists, strict and lazy ByteString, and strict and
lazy Text.

There are also several library packages5 that define classes
named StringLike or ListLike, either for internal use only or for
common use by several other packages. The classes come with
instances for different string types. This may be the clearest in-
dication of the magnitude of the problem, and also presents the
most closely related work to the one presented here. We will later
compare these approaches to ours.

1.2 Overview of the rest of the paper
The remainder of the paper will present one possible way to stop
the current fragmentation. In the spirit of Haskell, the solution
uses type classes to abstract over all of the existing string data
types. Similarly to the Monoid class that they extend, however, the
new classes’ theoretical foundations allow them to be instantiated
by many additional types unrelated to strings. We hope that this
combination of practicality and generality makes the presented
solution attractive to developers of string-processing libraries in
Haskell.

The following section will present the design of the monoid-
subclasses library, beginning with its mathematical foundations
and ending with some practical refinements. Then we discuss an
early application of the library, analyze the results, and finish with
a comparison to the related work and a look at the possible future
development.

2. Design
2.1 Mathematical background
Introductory textbooks on abstract algebra tend to dwell on semi-
groups and monoids, and than expand to groups. While monoids are
a part of the Haskell base libraries, and many wish that semigroups

4 A cursory search reveals attoparsec, blaze-markup, csv-conduit, double-
conversion, netspec, polyparse, process-extras, and reform-blaze.
5 GroundHog, ListLike, network-fancy, StringLike, tagsoup

were as well, groups are relegated to the rarely-used libraries spe-
cific to algebra. The main reason is that there are few data types
that can implement the inverse operation that groups require.

Most importantly for our purposes, no string-like data type can
support the inverse operation.

Is the abstract algebra theory then useless beyond monoids? Not
quite. There are some interesting algebraic structures that are more
powerful than semigroups and monoids, yet more general than full
groups.

2.1.1 Commutative semigroup and monoid
The most commonly recognized subclass of semigroups are com-
mutative semigroups, whose binary operation � has the commuta-
tivity property:

a � b = b � a

A commutative semigroup which is also a monoid is called a
commutative monoid. The corresponding Haskell class declaration
would be

class Monoid m ⇒ CommutativeMonoid m

The CommutativeMonoid class has no methods of its own.
Its only purpose is to constrain the type parameters of other type
classes and functions.

2.1.2 Cancellative semigroup
A semigroup S with the binary operation � is called left cancella-
tive[6] if, for any a, b, c ∈ S, a � b = a � c implies b = c; one
can cancel out the common factor on the left. Conversely, in a right
cancellative semigroup a � c = b � c always implies a = b. A
semigroup that is both left- and right-cancellative is simply called a
cancellative semigroup. This property of a semigroup is orthogonal
to the existence of the neutral element, so we can also speak of a
left- and right-cancellative monoid, or just a cancellative monoid.

Every group is a cancellative monoid: to cancel out the com-
mon factor, we can simply apply its inverse to both sides of the
equation. Not every cancellative monoid is a group, however. A
case of particular interest to us is that of strings or sequences of
any kind, which indeed are cancellative but (as already noted) have
no inverse.

The guarantee that the cancellation produces a unique result
means that we can introduce a new binary operation for it. In
fact, the Text type already supports this operation under the names
stripPrefix and stripSuffix . We shall adopt these names for the
left- and right-cancellative monoid, respectively. For the monoids
which are both commutative and cancellative, we need to introduce
a new operation which we shall denote as /� , or </> in ASCII no-
tation. The Haskell representation of the three cancellative monoid
classes would then be:

class Monoid m ⇒ LeftCancellativeMonoid m
where stripPrefix :: m → m → Maybe m

class Monoid m ⇒ RightCancellativeMonoid m
where stripSuffix :: m → m → Maybe m

class (CommutativeMonoid m,
LeftCancellativeMonoid m,
RightCancellativeMonoid m)⇒

CancellativeMonoid m where
(/�) :: m → m → Maybe m

The three class methods satisfy the following laws:

stripPrefix a (a � b) = Just b (1)
stripSuffix b (a � b) = Just a (2)

(a � b) /� b = Just a (3)
stripPrefix a c = Just b ⇒ a � b = c (4)
stripSuffix b c = Just a ⇒ a � b = c (5)

a /� b = Just c ⇒ b � c = c � b = a (6)

The first three laws above state the left and right cancellativity
of the monoids. The remaining laws further restrict the operations’
semantics to return Nothing whenever the cancellation is impossi-
ble.

In LeftCancellativeMonoid and RightCancellativeMonoid we
now have the first two theoretically well-grounded classes that all
string types can implement in addition to Eq, Ord, IsString, and
Monoid. Not only that, but other sequence-preserving containers
like [a], Seq a and Vector a are their instances as well.

The commutative CancellativeMonoid class has no bearing on
string data types, but it is provided for completeness. Among all
data types in the containers and base library, the only non-trivial
instance of this class is Sum n .

2.1.3 Reductive semigroup
One might expect all other container monoids such as Set a to
be cancellative as well, but that is not the case. The reason for
this is that the monoid operation on Set, namely the set union,
is non-injective because it discards all duplicate elements. That
makes it impossible to reconstruct its original operands. The natural
cancellation operation for the set union would be the set difference,
but it does not satisfy the law (3):6

({a, b} ∪ {a}) \ {a} = {b} 6= {a, b}
The Product monoid has a similar problem: every multiplica-

tion is cancellative with the exception of multiplication by zero.
The cancellation cannot satisfy the law (3) because 0/0 is not de-
fined.

We can still accommodate the numerous data types with non-
injective monoid operation like Product, Set, and Map. These
monoids may not be cancellative, but they are reductive monoids.
The formal difference between a cancellative and reductive semi-
group is merely in the placement of a qualifier:

(∀a, b, c ∈ S)(a�b = a�c⇒ b = c) left cancellative

(∀b, c ∈ S)((∀a ∈ S)(a�b = a�c)⇒ b = c) left reductive
(7)

A left-cancellative semigroup S requires the section (a�) ::
S → S to be injective for every a ∈ S so it has a unique
inverse. In a reductive non-cancellative semigroup the operation of
cancellation does not guarantee a unique result. To reflect this fact,
we could tweak the cancellation so it returns all possible results:

class Monoid m ⇒ ReductiveMonoid m where
(/�) :: m → m → [m]

Turning back to the Set example, we would have

({a, b} � {a}) /� {a} = {a, b} /� {a} =
{
{b} , {a, b}

}
In practice, however, having all possible cancellation results

would probably not be very useful. For the purpose of cancellation,

6 A multiset data type would not have this problem, since its union operation
is injective.

having one result is as good as having many to choose one from.
Cases like 0 /� 0 in the Product monoid can have an infinite number
of solutions. For these reasons and others, the ReductiveMonoid
class will keep the same type signature for the /� operation as
CancellativeMonoid. The only difference is that the former class
will obey only a subset of the laws respected by the latter.

Every cancellative semigroup is also reductive, so the natural
way to declare the two classes in Haskell is to make ReductiveMo-
noid a superclass of CancellativeMonoid. When we add the non-
commutative classes to the mix, we end up with six classes:

class Monoid m ⇒ LeftReductiveMonoid m where
stripPrefix :: m → m → Maybe m

class Monoid m ⇒ RightReductiveMonoid m where
stripSuffix :: m → m → Maybe m

class (CommutativeMonoid m, LeftReductiveMonoid m,
RightReductiveMonoid m)

⇒ ReductiveMonoid m where
(/�) :: m → m → Maybe m

class LeftReductiveMonoid m
⇒ LeftCancellativeMonoid m

class RightReductiveMonoid m
⇒ RightCancellativeMonoid m

class (LeftCancellativeMonoid m,
RightCancellativeMonoid m,ReductiveMonoid m)

⇒ CancellativeMonoid m

The cancellative classes do not add any new methods, they
merely require the inherited methods to respect the full set of
cancellation laws listed above. The reductive classes require only
the laws (4), (5), and (6) to be followed. In principle the law (7)
and its equivalents should be respected as well, but unfortunately
they cannot be expressed in Haskell.

2.1.4 GCD-semigroup
A semigroup (S, �) is called a GCD-semigroup[9] if for its any two
elements a, b ∈ S it also contains their greatest common divisor
gcd(a, b) satisfying the following properties:

(∃a1 ∈ S) a = a1 � gcd(a, b)
(∃b1 ∈ S) b = b1 � gcd(a, b)

a = a2 � c ∧ b = b2 � c⇒ (∃c1 ∈ S) gcd(a, b) = c1 � c
Since the gcd operation subsumes the test of divisibility, ev-

ery GCD-semigroup is necessarily reductive. The Haskell type
class GCDMonoid should therefore be declared a subclass of
ReductiveMonoid. As we had before, there will be a separate class
for commutative monoids and two classes for non-commutative
ones:

class (ReductiveMonoid m, LeftGCDMonoid m,
RightGCDMonoid m)

⇒ GCDMonoid m where
gcd :: m → m → m

class LeftReductiveMonoid m
⇒ LeftGCDMonoid m where

commonPrefix :: m → m → m
stripCommonPrefix :: m → m → (m,m,m)

class RightReductiveMonoid m
⇒ RightGCDMonoid m where

commonSuffix :: m → m → m
stripCommonSuffix :: m → m → (m,m,m)

Informally, the function commonPrefix returns the greatest
prefix common to its two arguments, while commonSuffix returns

Figure 1. Reductive, Cancellative, and GCD classes

their greatest common suffix. For the commutative GCDMonoid
instances the two methods are synonymous with the method gcd .

The classes must satisfy the appropriate laws, of which we
present only those that apply to the LeftGCDMonoid class; the
others are equivalent:

stripCommonPrefix a b = (p, a′, b′)

⇓
commonPrefix a b = p

∧ a = p � a′

∧ b = p � b′

stripPrefix p a = Just a′

∧ stripPrefix p b = Just b′

⇓
stripCommonPrefix a b = (p, a′, b′)

In case the instance of LeftReductiveMonoid is also an instance
of LeftCancellativeMonoid, it must additionally satisfy the follow-
ing law:

commonPrefix (p � a) (p � b) = p � (commonPrefix a b)

All the classes presented so far are related, and their relationship
can be visualized as the diagram in Figure 1.

2.1.5 Factorial semigroup
A non-commutative semigroup S is called factorial if every ele-
ment a ∈ S has a unique factorization a = a1 � a2 � . . . � an into a
sequence of atomic (i.e., prime) elements ai that cannot be factor-
ized themselves. The same term can be applied to a commutative
semigroup, except in that case we require the factorizations to be
unique only up to reordering. If the semigroup has a unit element
(i.e., if it is a monoid), we only consider the factorizations that do
not include it. The unit element is necessarily prime itself.

This Haskell type class can be used to model the concept of the
factorial monoid:

class Monoid m ⇒ FactorialMonoid m where
factors :: m → [m]
factors = unfoldr splitPrimePrefix
splitPrimePrefix :: m → Maybe (m,m)

provided it satisfies the following laws:

mconcat ◦ factors = id

factors ε = []

all (λp→ factors p = [p]) ◦ factors

The first law states that the factorization is proper, so if we
concatenate all the factors we get back the original monoid. The
second law clarifies the proper factorization of the unit value ε, or
mempty. Finally, the third law demands every factor to be prime.

It’s worth noting one law that is explicitly not required from the
FactorialMonoid class instances:

factors (a � b) = factors a � factors b

If it held, this law would make factorizations a global property.
It would also disallow the FactorialMonoid instances of many data
types like that of Product, again due to multiplication by zero.

Most monoidal data structures in use are factorial. All string
types can be trivially made instances of the FactorialMonoid class,
and so can Sum, Product, Set, Map, Vector, and others. For
example:

• The factors of a String or Text value are its one-character
substrings:

factors "abc" ≡ ["a","b","c"]

• A Product is factorized into the list of its prime factors:

factors (Product 20)
≡ [Product 2,Product 2,Product 5]

• The factors of a Set are its singleton subsets:

factors (fromList [1, 2, 3])
≡ [singleton 1, singleton 2, singleton 3]

• In general, any monoidal collection type that is both Foldable
and Applicative can be made an instance of FactorialMonoid:

factors = foldMap (λs → [pure s])

Given the factors function, we can generalize many of the higher-
order functions that operate on lists. In fact, some of them could be
said to generalize even upon their already-generalized counterparts
from the Foldable and Traversable classes:

foldl :: FactorialMonoid m ⇒
(a → m → a)→ a → m → a

foldr :: FactorialMonoid m ⇒
(m → a → a)→ a → m → a

length :: FactorialMonoid m ⇒ m → Int
foldMap :: (FactorialMonoid m,Monoid n)⇒

(m → n)→ m → n
take :: FactorialMonoid m ⇒ Int→ m → m
takeWhile :: FactorialMonoid m ⇒

(m → Bool)→ m → m
reverse :: FactorialMonoid m ⇒ m → m

Wherever a Foldable or Traversable class method in its sig-
nature has an element a of the structure f a, the corresponding
FactorialMonoid method has a prime factor of the monoid m.

2.2 Practical considerations
The two remaining classes that come with monoid-subclasses are
not as well theoretically founded as those presented so far. They
were motivated purely by practical concerns. That does not mean
they are any more practical, only that I failed to find any existing
algebraic concepts to base them on.

2.2.1 MonoidNull
The simplest possible inspecting extension to the Monoid class
would be

class Monoid m ⇒ MonoidNull m where
null ::Monoid m ⇒ m → Bool

There is really not much to say about it. The class comes with a
single law:

null a⇔ a = ε
We can easily tell for any factorial monoid whether it is the

unit by checking if its factors are an empty list. It follows that
MonoidNull should be a superclass of FactorialMonoid.

2.2.2 Textual Monoid
Class TextualMonoid brings together all functionality required of
a string type. Its declaration is

class (IsString t , LeftReductiveMonoid t ,
LeftGCDMonoid t ,FactorialMonoid t)

⇒ TextualMonoid t where
splitCharacterPrefix :: t → Maybe (Char, t)

The new splitCharacterPrefix method is closely related to
splitPrimePrefix from the FactorialMonoid class, the difference
being that the former attempts to coerce the prime prefix of the
monoid into a character. If the monoid starts with a character the
method must always extract it:

splitCharacterPrefix (fromString [c] � t) = Just (c, t)

Another law of TextualMonoid restricts each character to make
a single prime factor:

splitCharacterPrefix m = Just (c, t)

⇓
(∃p)(splitCharacterPrefix p = Just (c, ε)

∧ splitPrimePrefix m = Just (p, t))

It is worth noting that not every prime factor needs to corre-
spond to a character:

splitPrimePrefix m = Just (p, t)

; splitCharacterPrefix m = Just (c, t)

The reason we don’t enforce this is to accommodate data types
which contain characters interleaved with other things. One obvi-
ous use for these non-character factors would be the invalid en-
codings that don’t correspond to any character, but they could also
represent markup or other structural parts of the data type.

To summarize, TextualMonoid together with its super-classes
provides the following functionality:

• creation of values from lists of characters (and with GHC’s
OverloadedStrings extension, directly from string literals as
well) inherited from the IsString class,

• Eq and Ord comparisons,
• matching and stripping of prefixes, inherited from LeftReduc-
tiveMonoid,
• finding the longest common prefix inherited from LeftGCDMo-
noid,
• splitting a value into a sequence of atomic values with at most

one character each, and
• extracting the character a value starts with.

Notably missing from the superclass constraints are RightReduc-
tiveMonoid and RightGCDMonoid. They were left out because
the existing string types do not provide efficient instances of these
classes, and because the suffix operations are less common than the
prefix operations in practice.

Even though all of the existing string types are instances of
LeftCancellativeMonoid, the TextualMonoid class requires only
the LeftReductiveMonoid superclass in order to allow more pos-
sible instances. Full cancellativity is often not required in practice,
and the constraint can be added explicitly when necessary.

2.2.3 Performance requirements
Method signatures and law guarantees are all necessary, but not
always sufficient. The client of a type class quite often in practice
wants to know not only that a particular instance conforms with
the type class interface, but that it does so efficiently. The only
support we can offer here is to informally declare various worst-
case complexity bounds for the class methods. At the moment the
only such informal guarantees in monoid-subclasses are that

• the complexity of the null method instance should be constant,
while
• the complexity of the method instances stripPrefix m n and

stripSuffix m n should be no worse than O(#m · log#n).

The latter requirement eliminates the possibility of a RightRe-
ductiveMonoid instance for lists – a guarantee on one side is a
constraint on the other.

2.2.4 Additional class methods
All of the class presentations above concentrated on the fundamen-
tal class methods, because they suffice as the basis for defining all
functions of interest. In the case of FactorialMonoid, for example,
functions like length , take , takeWhile , reverse , and others could
be implemented using the method factors alone.

While this minimalistic approach is elegant, the performance of
such functions would be far worse than that of their specialized
counterparts. These functions have therefore been made into addi-
tional class methods, and most instances of FactorialMonoid map
them directly onto their specialized versions. As an example, the
actual definition of the FactorialMonoid instance for strict Text
type is given in Figure 2.

All additional methods have been given a default implementa-
tion based on the fundamental methods, so new instances of classes
can be easily defined.

2.2.5 Language standard compatibility
All type class declarations laid out above are fully compatible with
the Haskell 98 and Haskell 2010 standards. Most class instance def-
initions are compatible with these standards as well. The only ex-
ception is the instance TextualMonoid String, which requires
the FlexibleInstances language extension provided by GHC. The
extension is not controversial, and even it could be made unnec-
essary by introducing an IsChar class. We have judged the present
form of the instance declaration less intrusive.

instance FactorialMonoid Text.Text where
factors = Text.chunksOf 1
primePrefix = Text.take 1
primeSuffix x = if Text.null x

then Text.empty
else Text.singleton (Text.last x)

splitPrimePrefix =
fmap (first Text.singleton c) ◦ Text.uncons

splitPrimeSuffix x =
if Text.null x
then Nothing
else Just (Text.init x ,Text.singleton (Text.last x))

foldl f = Text.foldl f ′

where f ′ a char = f a (Text.singleton char)
foldl ′ f = Text.foldl ′ f ′

where f ′ a char = f a (Text.singleton char)
foldr f = Text.foldr f ′

where f ′ char a = f (Text.singleton char) a
length = Text.length
span f = Text.span (f ◦ Text.singleton)
break f = Text.break (f ◦ Text.singleton)
dropWhile f = Text.dropWhile (f ◦ Text.singleton)
takeWhile f = Text.takeWhile (f ◦ Text.singleton)
split f = Text.split f ′

where f ′ = f ◦ Text.singleton
splitAt = Text.splitAt
drop = Text.drop
take = Text.take
reverse = Text.reverse

Figure 2. Full instance of the FactorialMonoid class for Text

3. Parser Combinator Libraries
Most of the classes presented in the previous section were origi-
nally a part of the incremental-parser[2] library, before they gained
a library package of their own. The aforementioned parser pack-
age still depends on these classes and uses them to implement its
generic parsing combinators.

The incremental-parser package is not readily comparable with
other parsing combinator libraries, so we won’t discuss it here. We
have instead turned to the more popular attoparsec[17] library and
extended it with the generic versions of its existing combinators.
Another benefit of this approach is that something quite similar has
been done before with nanoparsec, and that gives us another point
of comparison.

3.1 Attoparsec
The attoparsec parser combinator library is a quick and simple
alternative to Parsec[16]. One simplification from Parsec 3 that
is of particular interest here is that attoparsec is monomorphic
in its input type. The only input type it originally supported was
strict ByteString, but later versions have added new monomorphic
implementations of the same operators that accept only Text inputs
instead of ByteString. This deficiency makes attoparsec a prime
candidate for generalization.

3.2 Nanoparsec and ListLike
This idea has been followed before. The nanoparsec[19] library is
a polymorphic re-implementation of attoparsec that accepts any in-
put instantiating the ListLike class, imported from the library pack-

age of the same name. This class has two type parameters, which
makes it incompatible with the Haskell 2010 language standard.
The two parameters represent the full list-like type and the type of
the items it contains:

class (FoldableLL full item,Monoid full)⇒
ListLike full item | full → item where

singleton :: item → full
head :: full → item
tail :: full → full
null :: full → Bool

3.3 Monoid-attoparsec
The monoid-attoparsec library [3] is another generalization of at-
toparsec based on the monoid subclasses introduced in the previ-
ous section. The parsing combinators it exports are copied with-
out any modification from attoparsec. Its primitive parser functions
have been re-implemented, and they have several differences with
nanoparsec worth noting:

• Where a primitive parser function in attoparsec has the hard-
coded token type in its signature, the corresponding function
in nanoparsec has the collection item type parameter, and in
monoid-attoparsec the collection type. This collection is always
a singleton (a.k.a. a prime monoid) in such cases. Take the
example of the parser function satisfy :

-- attoparsec ByteString
satisfy :: (Word8→ Bool)→ Parser Word8

-- attoparsec Text
satisfy :: (Char→ Bool)→ Parser Char

-- nanoparsec
satisfy :: ListLike δ ε⇒ (ε→ Bool)→ Parser δ ε

-- monoid-attoparsec
satisfy :: FactorialMonoid t ⇒ (t → Bool)→ Parser t t

• Since the most common use of parser libraries is on text, an
additional allowance has been made for the TextualMonoid in-
puts. For each attoparsec function that works with input tokens,
there are two functions in monoid-attoparsec: one that expects a
generic FactorialMonoid input as explained above, and another
specialized to TextualMonoid and Char. To take the example
of satisfy again, the specialized version is

satisfyChar :: TextualMonoid t ⇒
(Char→ Bool)→ Parser t Char

• While most primitive parser functions of monoid-attoparsec
work with FactorialMonoid inputs, that is no rule. The function
endOfInput , for example, needs its input class only to instanti-
ate MonoidNull. Function string requires the LeftGCDMonoid
class as well, and several functions as explained above work
only with the TextualMonoid inputs.
• Both nanoparsec and monoid-attoparsec accept as inputs all

string types, as well as several additional data structures such as
Seq which are not typically used for parsing. These data types
instantiate both ListLike and the monoid subclasses. There are
also several data types that are not ListLike in any sense, but
are instances of LeftGCDMonoid and FactorialMonoid and
therefore qualify as inputs to monoid-attoparsec. The following
parser, if it can be called that, takes a Product Integer input
and checks if the input is a Hamming number, i.e., if it has the
form 2i · 3j · 5k:

hamming :: Parser (Product Integer) ()
hamming = skipWhile pred ∗> endOfInput
where pred (Product n) = elem n [2, 3, 5]

A slightly more practical parser with a non-standard input type
would be:

tokens :: (Ord t ,TextualMonoid t)⇒ Parser (t , Set t) [t]
tokens = token ‘sepBy ‘ takeWhile1 space

where token = do (tok ,)← takeTill space
string (ε, Set.singleton tok)
return tok

space (t ,) = t ≡ " "

This parser’s input is a pair of a TextualMonoid and a set of
tokens of the same type. It consumes from the first component of
the pair as many space-separated tokens as it can find in the set.
No token is allowed more than once, because the string invocation
above consumes it from the set.

4. Results
In order to check if the monoid-attoparsec library can be used in
practice with a satisfactory performance, we are going to take an
existing parser relying on attoparsec and to modify it so it uses
monoid-attoparsec instead. The parser to modify will be attoparsec-
csv[5], a relatively simple CSV parser that takes Text input and
returns [[Text]] output: a list of CSV records, where each record is
a list of fields.

4.1 CSV parser rewrite
We are applying only the minimal modifications required to switch
the underlying parser combinator library. Since attoparsec-csv uses
various character-parsing functions for Text inputs, we can gener-
alize the input type only up to the TextualMonoid class.

• the library imports are changed;
• the type signatures of the parser functions must be generalized;

for example, Parser [T.Text] becomes TextualMonoid t ⇒
Parser t [t];
• T.append and T.concat function calls specific to Text are

replaced by more general mappend and mconcat ;
• all takeWhile calls are replaced by takeCharsWhile; and fi-

nally,
• return ’"’ is replaced with a more general return "\"" that

can return any IsString instance.

The original source code of attoparsec-csv is available at [5], the
generalized version is listed in Appendix A.

4.2 Benchmarks
We compare the performance of the original attoparsec-csv library
against our modified version using the sample CSV input with the
OpenFlights Airports Database7.

Parser combinator library Input type Time
attoparsec Text 86.9 ms
nanoparsec Text > 1 min
nanoparsec CharString 83.3 ms

monoid-attoparsec ByteStringUTF8 93.5 ms
monoid-attoparsec Text 103.7 ms
monoid-attoparsec Lazy.Text 178.4 ms
monoid-attoparsec Seq Char 197.2 ms
monoid-attoparsec String 286.8 ms
monoid-attoparsec Vector Char 545.3 ms

7 From http://openflights.org/data.html

The timing was performed using the Criterion benchmarking
library[18] and GHC 7.6.2. The entire input file of 636KiB in UTF-
8 encoding was loaded in memory and converted to the desired
input type before the measurement.

In most cases the entire input was parsed at once, using the func-
tion parseCSV . However, three input types took an exceedingly
long time to parse with this method. The cause of the slowdown
turned out to be the monoid append operation � that attoparsec in-
vokes on the input after a local failure, where the right-hand argu-
ment of the operator tends to be empty. For these three data types,
Lazy.Text, String, and Vector Char, the � operation requires time
proportional to the length of its left-hand argument. This behaviour
is a part of the core definitions of attoparsec and as such was inher-
ited by nanoparsec and monoid-attoparsec.

The adopted workaround was to apply the attoparsec CSV
parser incrementally to small chunks of the input, using the func-
tion parseChunkedCSV . The optimal chunk length was empir-
ically determined to be approximately 24 characters in case of
String and Vector Char, and 256 characters in case of Lazy.Text.
The times shown in the table were measured using these chunk
lengths.

The nanoparsec measurements were performed using a mod-
ified version of attoparsec-csv that imports nanoparsec instead of
attoparsec, together with other necessary modifications. The source
code of this modified module is provided in Appendix B.

The terrible performance of nanoparsec with the Text input
is partly due to the � operation noted above, but even more to
its regular use of the length method of ListLike. This method
call is inherited from attoparsec as a shortcut within the input
prefix check. The shortcut pays off with the ByteString inputs,
but the complexity of length in the Text instance of ListLike is
O(n), which translates to O(n2) for the entire parse. The monoid-
attoparsec adaptation of the input prefix check eschews the use of
the length method in favour of stripCommonPrefix which has a
more predictable performance.

In the interest of fairness, a performance measurement of
nanoparsec with the CharString input type has also been included
for comparison. This data type is a newtype wrapper around
ByteString and provides a ListLike instance with the O(1) com-
plexity for its length method, so it does not suffer from the same
problem. Note however that we had to provide an invalid instance
of IsString CharString which can accept only a small subset of the
Unicode character set. This is the reason monoid-subclasses does
not provide such a simple wrapper around ByteString to masquer-
ade as a TextualMonoid. The only ByteString wrapper that the
package currently provides is ByteStringUTF8, capable of repre-
senting any Unicode character.

4.3 Conclusions
We can see from the result table that the best performing string
types are the strict Text and ByteStringUTF8. The lazy variant of
Text has proven much worse in this case, but mostly because of the
heavy use of the � operation by attoparsec as explained above.

If we compare the performance of strict Text input under
monoid-attoparsec against attoparsec which is specialized and
highly optimized for this type, the cost of the generalization is
around 20%. This performance cost is not trivial, but it must be
weighed against the added ability to choose the optimal data type
for the task at hand. It should also be noted that monoid-attoparsec
is only a conservative extension of attoparsec, leaving its internals
completely unmodified. More intrusive optimizations are certainly
possible.

http://openflights.org/data.html

5. Related and future work
The motivation for monoid-subclasses originally appeared in the
context of streaming Haskell coroutines in producer-consumer
relationships[4]. A stream exchanged between such coroutines
naturally forms a monoid, and the consumer often needs to ex-
amine the structure of the received stream chunks. The iteratee
library[14, 15] thus depends on ListLike for the very same reason.
We intend to revisit this application area.

In order to cover as many data types as possible, monoid-sub-
classes concentrates on the monoidal data type alone and abstracts
over the the type of the item it contains. This choice does incur
some performance penalty, but we believe it is worth the added ab-
straction and simplicity. As a support for this position, we can only
offer virtually all programming languages that have been designed
and used primarily for string manipulation, such as SNOBOL[8],
Icon[11], AWK[1], or Perl[20]. These languages have only a single
string type and no first-class character type: when needed, a char-
acter is represented as a single-character string. This uniformity of
expression has proven to be their strength.

Another benefit of ignoring the item type is that it leaves only
the single type parameter for each class, which means that the class
declarations do not require any extension to the standard Haskell
2010. The most prominent previous attempt to abstract over the
multiple string types, the ListLike library[10], uses multi-parameter
type classes instead. This may be the reason it failed to gain much
traction. The classes presented by this paper are also more generic
and easier to implement, which gives them a wider applicability.

The class methods provided by monoid-subclasses have proven
to be quite sufficient for implementing efficient parsing combinator
libraries, but it remains to be seen if they are capable of supporting
other application domains. One area where they are currently lack-
ing any support is I/O, though it is questionable how practical such
an extension would be. Another obvious extension would be a new
type class interface for searchable non-commutative monoids:

class (LeftReductiveMonoid,
RightReductiveMonoid)

⇒ SearchableMonoid where
isInfix :: t → t → Bool
stripLeftmost :: t → t → Maybe (t , t)
stripRightmost :: t → t → Maybe (t , t)

A more complex extension would be required to support effi-
cient scanning and regular expression matching on monoid values.

If the Semigroup class ever assumes its rightful place as a
superclass of Monoid in the base Haskell libraries, the monoid-
subclasses package will require an implementation overhaul, and
would benefit from a name change. Each of the existing classes
would gain a new non-monoid superclass, but their interfaces
would not need to change.

We believe that we have proven that the library has the technical
merits to fix Haskell’s string type problems. To actually succeed at
this task, three things need to happen.

Firstly, the range of the available data types could expand.
The authors of libraries that instantiate the Monoid class should
consider providing the instances for its subclasses as well. This part
is relatively easy for the authors, and should be helped by the fact
that the monoid-subclasses library is lightweight and standards-
compliant.

The second part of the puzzle are generic client libraries. The
monoid-attoparsec library is a start, but we need other low-level
generic libraries.

Finally, the authors of the higher-lever libraries that currently
rely on attoparsec need to compare the benefits of generalizing their
input type against the costs of the code update and the performance

penalty. This call will have to be made by each author and for each
library individually.

References
[1] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. Awk–

a pattern scanning and processing language. Software: Practice and
Experience, 9(4):267–279, 1979.

[2] Mario Blažević. incremental-parser: Generic parser library ca-
pable of providing partial results from partial input. Hack-
age. http://hackage.haskell.org/package/
incremental-parser.

[3] Mario Blažević. monoid-attoparsec: an input-generic fork of at-
toparsec. Bitbucket. https://bitbucket.org/blamario/
monoid-attoparsec.

[4] Mario Blažević. Coroutine pipelines. The Monad. Reader Issue 19:
Parallelism and Concurrency, page 29, 2011.

[5] Robin Bate Boerop. attoparsec-csv: A parser for csv files that
uses attoparsec. Hackage. http://hackage.haskell.org/
package/attoparsec-csv.

[6] Alfred H Clifford and Gordon Bamford Preston. The algebraic theory
of semigroups, volume 1. American Mathematical Soc., 1961.

[7] Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting
Haskell strings. In Practical Aspects of Declarative Languages, pages
50–64. Springer, 2007.

[8] David J Farber, Ralph E Griswold, and Ivan P Polonsky. Snobol, a
string manipulation language. Journal of the ACM (JACM), 11(1):21–
30, 1964.

[9] Robert Gilmer and Tom Parker. Divisibility properties in semigroup
rings. The Michigan Mathematical Journal, 21(1):65–86, 1974.

[10] John Goerzen. Listlike: Generic support for list-like struc-
tures. Hackage. http://hackage.haskell.org/package/
ListLike.

[11] Ralph E Griswold and Madge T Griswold. The Icon programming
language, volume 28. Prentice-Hall Englewood Cliffs NJ, 1983.

[12] Thomas Harper. Stream fusion on Haskell unicode strings. In Imple-
mentation and Application of Functional Languages, pages 125–140.
Springer, 2011.

[13] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In Proceedings of the third
ACM SIGPLAN conference on History of programming languages,
pages 12–1. ACM, 2007.

[14] Oleg Kiselyov. iteratee: Iteratee-based i/o. Hackage. http://
hackage.haskell.org/package/iteratee.

[15] Oleg Kiselyov. Iteratees. In Proceedings of the 11th international
conference on Functional and Logic Programming, pages 166–181.
Springer-Verlag, 2012.

[16] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical report, Department of
Computer Science, Utrecht University, 2001.

[17] Bryan O’Sullivan. attoparsec: Fast combinator parsing for
bytestrings. Hackage. http://hackage.haskell.org/
package/attoparsec.

[18] Bryan O’Sullivan. criterion: Robust, reliable performance measure-
ment and analysis. Hackage. http://hackage.haskell.org/
package/criterion.

[19] Maciej Piechotka. nanoparsec: An implementation of attoparsec-like
parser around list-like. Hackage. http://hackage.haskell.
org/package/nanoparsec.

[20] Larry Wall et al. The Perl programming language, 1994.

http://hackage.haskell.org/package/incremental-parser
http://hackage.haskell.org/package/incremental-parser
https://bitbucket.org/blamario/monoid-attoparsec
https://bitbucket.org/blamario/monoid-attoparsec
http://hackage.haskell.org/package/attoparsec-csv
http://hackage.haskell.org/package/attoparsec-csv
http://hackage.haskell.org/package/ListLike
http://hackage.haskell.org/package/ListLike
http://hackage.haskell.org/package/iteratee
http://hackage.haskell.org/package/iteratee
http://hackage.haskell.org/package/attoparsec
http://hackage.haskell.org/package/attoparsec
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/nanoparsec
http://hackage.haskell.org/package/nanoparsec

A. attoparsec-csv generalized using
monoid-attoparsec

{-# Language FlexibleContexts, OverloadedStrings #-}

module Text.CSV.Monoid (parseCSV , parseChunkedCSV)
where

import Prelude hiding (splitAt)
import Control.Applicative ((<$>), (<|>), (<∗>),

(<∗), (∗>),many)
import Control.Monad (void)
import Data.Monoid (mappend ,mconcat)
import Data.Monoid.Textual (TextualMonoid)
import Data.Monoid.Factorial (splitAt)
import Data.Attoparsec.Monoid

lineEnd :: TextualMonoid t ⇒ Parser t ()
lineEnd =

void (char ’\n’)<|> void (string "\r\n")
<|> void (char ’\r’)
<?> "end of line"

unquotedField :: TextualMonoid t ⇒ Parser t t
unquotedField =

takeCharsWhile (/∈ ",\n\r\"")
<?> "unquoted field"

insideQuotes :: TextualMonoid t ⇒ Parser t t
insideQuotes =

mappend <$> takeCharsWhile (6≡ ’"’)
<∗> (mconcat

<$> many (mappend <$> dquotes
<∗> insideQuotes))

<?> "inside of double quotes"
where

dquotes = string "\"\"">> return "\""
<?> "paired double quotes"

quotedField :: TextualMonoid t ⇒ Parser t t
quotedField =

char ’"’ ∗> insideQuotes <∗ char ’"’
<?> "quoted field"

field :: TextualMonoid t ⇒ Parser t t
field =

quotedField <|> unquotedField
<?> "field"

record :: TextualMonoid t ⇒ Parser t [t]
record =

field ‘sepBy1 ‘ char ’,’
<?> "record"

file :: TextualMonoid t ⇒ Parser t [[t]]
file =
(:)<$> record

<∗> manyTill (lineEnd ∗> record)
(endOfInput <|> lineEnd ∗> endOfInput)

<?> "file"

parseCSV :: TextualMonoid t ⇒ t → Either String [[t]]
parseCSV = parseOnly file

parseChunkedCSV :: (Show t ,TextualMonoid t)⇒
Int→ t → Either String [[t]]

parseChunkedCSV chunkLength s =
continue s (Partial (parse file))
where continue s (Done r) = Right r

continue s (Fail rest contexts msg) =
Left $ show (rest , contexts,msg)

continue s (Partial f) =
let (prefix , suffix) = splitAt chunkLength s
in continue suffix (f prefix)

B. attoparsec-csv generalized using nanoparsec
{-# Language FlexibleContexts, OverloadedStrings #-}

module Text.NanoCSV (parseCSV) where

import Prelude hiding (concat , elem, takeWhile)
import Control.Applicative ((<$>), (<|>), (<∗>), (<∗), (∗>))
import Control.Monad (void)
import Data.String (IsString)
import Data.ListLike (ListLike, append , concat , cons, empty)
import Data.Nanoparsec

lineEnd :: (Eq t , IsString t , ListLike t Char)⇒ Parser t ()
lineEnd =

void (elem ’\n’)<|> void (string "\r\n")
<|> void (elem ’\r’)

<?> "end of line"

unquotedField :: ListLike t Char⇒ Parser t t
unquotedField =

takeWhile (/∈ ",\n\r\"")
<?> "unquoted field"

insideQuotes :: (Eq t , IsString t , ListLike t Char)⇒ Parser t t
insideQuotes =

append <$> takeWhile (6≡ ’"’)
<∗> (concat <$> many (cons <$> dquotes

<∗> insideQuotes))
<?> "inside of double quotes"
where

dquotes =
string "\"\"">> return ’"’
<?> "paired double quotes"

quotedField :: (Eq t , IsString t , ListLike t Char)⇒ Parser t t
quotedField =

elem ’"’ ∗> insideQuotes <∗ elem ’"’
<?> "quoted field"

field :: (Eq t , IsString t , ListLike t Char)⇒ Parser t t
field =

quotedField <|> unquotedField
<?> "field"

record :: (Eq t , IsString t , ListLike t Char)⇒ Parser t [t]
record =

field ‘sepBy1 ‘ elem ’,’
<?> "record"

file :: (Eq t , IsString t , ListLike t Char)⇒ Parser t [[t]]
file =

(:)<$> record
<∗> manyTill (lineEnd ∗> record)
(endOfInput <|> lineEnd ∗> endOfInput)

<?> "file"

parseCSV :: (Eq t , IsString t , ListLike t Char)⇒
t → Either String [[t]]

parseCSV = eitherResult ◦ (‘feed ‘empty) ◦ parse file

	Introduction
	The string compatibility problem
	Conversion
	Abstraction

	Overview of the rest of the paper

	Design
	Mathematical background
	Commutative semigroup and monoid
	Cancellative semigroup
	Reductive semigroup
	GCD-semigroup
	Factorial semigroup

	Practical considerations
	MonoidNull
	Textual Monoid
	Performance requirements
	Additional class methods
	Language standard compatibility

	Parser Combinator Libraries
	Attoparsec
	Nanoparsec and ListLike
	Monoid-attoparsec

	Results
	CSV parser rewrite
	Benchmarks
	Conclusions

	Related and future work
	References
	attoparsec-csv generalized using monoid-attoparsec
	attoparsec-csv generalized using nanoparsec

