-
Notifications
You must be signed in to change notification settings - Fork 0
/
constant_time_test.go
265 lines (240 loc) · 5.53 KB
/
constant_time_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
package constant_time_go
import "testing"
import (
"math/rand"
)
func TestConstantTimeLessThanUint32(t *testing.T) {
tests := []struct {
x uint32
y uint32
a uint32
}{
{0,1, 1},
{2, 2, 0},
{1 << 31, 1 << 31, 0},
{17, 1 << 31, 1},
{2^32, 0, 0},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
answer := ConstantTimeLessThanUint32(test.x, test.y)
if test.a != answer {
t.Errorf("ConstantTimeLessThanUint32 #%d wrong result\ngot: %v\n"+
"want: %v", i, answer, test.a)
continue
}
}
}
func TestConstantTimeLessOrEqUint32(t *testing.T) {
tests := []struct {
x uint32
y uint32
a uint32
}{
{0, 1, 1},
{2, 2, 1},
{1 << 31, 1 << 31, 1},
{17, 1 << 31, 1},
{2 ^ 32, 0, 0},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
answer := ConstantTimeLessOrEqUint32(test.x, test.y)
if test.a != answer {
t.Errorf("ConstantTimeLessOrEqUint32 #%d wrong result\ngot: %v\n"+
"want: %v", i, answer, test.a)
continue
}
}
}
func TestConstantTimeEqUint32(t *testing.T) {
tests := []struct {
x uint32
y uint32
a uint32
}{
{0, 1, 0},
{2, 2, 1},
{1 << 31, 1 << 31, 1},
{17, 1 << 31, 0},
{2 ^ 32, 0, 0},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
answer := ConstantTimeEqUint32(test.x, test.y)
if test.a != answer {
t.Errorf("ConstantTimeLessOrEqUint32 #%d wrong result\ngot: %v\n"+
"want: %v", i, answer, test.a)
continue
}
}
}
// Notes on decent benchamrks
// 1. always record the result of your function to prevent
// the compiler eliminating the function call. print
// something related to all results to further avoid compiler optimization
// 2. prefer to use a pre-allocated array of input values, preferrably random,
// to avoid artificial branch prediction speedups
// 3. stop and start the timer manually to avoid mixing in setup
// and overhead time
// 4. Compare against a benchmark with your function removed
// to measure how much time is spent in the remaining overhead+setup
var num_rand = 100
// generates an slice of somewhat random numbers (actually only num_rand to keep it quick)
func randUint32s(n int) []uint32 {
arr := make([]uint32, n)
for i := range arr {
arr[i] = rand.Uint32()
}
return arr
}
// The control benchmark
func BenchmarkNothingUint32(b *testing.B) {
x := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= x[i]
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The implementation based on the one in crypto/subtle using 64bit ops internally
func BenchmarkConstantTimeLessThanUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= ConstantTimeLessThanUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// A branching implementation
func BenchmarkBranchingLessThanUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= BranchingLessThanUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The implementation based on the one in crypto/subtle
func BenchmarkConstantTimeLessOrEqUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= ConstantTimeLessOrEqUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// A branching implementation
func BenchmarkBranchingLessOrEqUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= BranchingLessOrEqUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The implementation based on the one in crypto/subtle
func BenchmarkConstantTimeEqUint32Alternate(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= ConstantTimeEqUint32Alternate(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The implementation based on int64
func BenchmarkConstantTimeEqUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= ConstantTimeEqUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// A branching implementation
func BenchmarkBranchingEqUint32(b *testing.B) {
x := randUint32s(b.N)
y := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= BranchingEqUint32(x[i], y[i])
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The implementation based on the one in crypto/subtle
func BenchmarkConstantTimeSelectUint32(b *testing.B) {
x := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= ConstantTimeSelectUint32(x[i], 2, 1)
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// A branching implementation
func BenchmarkBranchingSelectUint32(b *testing.B) {
x := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= BranchingSelectUint32(x[i], 2, 1)
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}
// The control benchmark again
func BenchmarkNothingUint32Again(b *testing.B) {
x := randUint32s(b.N)
result := uint32(0)
b.ResetTimer()
for i := 0; i < b.N; i++ {
result &= x[i]
}
b.StopTimer()
if (result == 73) {
print("whatever")
}
}