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Introduction 
 

Nearly every visual output from a modern computer is in the form of an image. The user interface elements 

in your applications are at some point rasterized into an image before being displayed. When you watch a 

video, you are watching a sequence of images. When you print a document, it is rasterized into an image 

either inside your computer or in the printer itself.  

 

An image is a 2D grid of pixels. A pixel defines the color at the corresponding point in the image. The color 

is specified with the values of color components in a given color space. For example, the color Red in an 

RGB color space is specified at 100% of the red channel, and 0% of the green and blue channels. 

The contexts in which images are used impose various requirements on the memory footprint of images 

and the performance of image processing algorithms, which leads to a variability of image representations. 

 

Certain algorithms traverse each pixel and access all of its channels, while other algorithms may prefer to 

access all the red components of an image, followed by the green, followed by the blue components. Each 

of these two types of algorithms suggests a different cache-friendly layout of the data: in an interleaved 

image the channels of a pixel are together in memory, whereas in a planar image all the channels of a given 

color are together in a color plane. Here is an example of how a 4x3 RGB interleaved image looks like in 

memory, with the second pixel hi-lighted: 

 

 
And here is how the same image looks like in planar form: 

 

 
Speed, precision, and memory footprint are conflicting goals, which give rise to a variety of channel 

representations. Channels may be represented with integral or floating point numbers with precision that 

typically varies from 1 bit to 64 or more bits. When memory is essential, the channels of an image may be 

represented with bit ranges that are often different for each color channel (such as a 16-bit 565 RGB pixel). 

Some video formats have very elaborate structure in which certain bit range channels are shared across 

different pixels. 
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Color spaces are another application-driven property of images. For example, the RGB color space is based 

on the way monitors model a color, whereas the CMYK color space represents the mixture of four inks 

used in color printers. Hardware architecture also influences the structure of an image. Certain platforms 

require alignment for efficient memory access. As a result, the rows of the image may be memory aligned, 

which results in a potential gap at the end of each row.  

 

While images vary widely in their representation in memory, they share the same conceptual framework – 

an image is a grid of pixels. There is a common set of algorithms that are useful to apply to any image. 

Basic algorithms include setting the pixels of an image to a given value, copying the pixels from one image 

to another, or comparing two images for equality. In addition, there are domain-specific algorithms, such as 

performing a convolution on an image, scan-converting a vector object into an image and file I/O. 

Clearly the set of image representations is open, and so is the set of algorithms on images. In many image 

libraries the representation of an image is often hard-coded into the algorithm itself and, as a result, we 

often have the algorithm duplicated for each of a fixed set of image types. This results in code that is large, 

hard to extend, and a nightmare to maintain. 

 

The goal of the Generic Image Library (GIL) is to abstract away image representations and allow for 

writing the algorithms once, while having them work efficiently on images in any representation. GIL 

leverages the promise of generic programming in C++ to allow for genericity without sacrificing 

performance. 

Simple Example 
 

Suppose we want to copy one image into another. For simplicity, lets assume that all pixels are consecutive 

in memory so we can do it in 1D. A non-generic code might look something like this: 

 
struct rgb_pixel  
{ 

    unsigned char red, green, blue; 
}; 
 
void copy_pixels(const rgb_pixel* src, rgb_pixel* dst,  
                 int width, int height)  
{ 
    const rgb_pixel* src_end = src + width*height; 
    while (src != src_end) { 
        *dst++ = *src++; 
    } 
} 

 

Suppose, however, that the destination image is planar, i.e. its red, green and blue channels are distributed 

in memory. We may have to do something like this: 

 
void copy_pixels(const rgb_pixel* src,  
    unsigned char* dst_red, unsigned char* dst_green,  
    unsigned char* dst_blue, int width, int height)  
{ 
      const rgb_pixel* src_end = src + width*height; 
      while (src != src_end) { 
           *dst_red++ = src->red; 
           *dst_green++ = src->green; 
           *dst_blue++ = src->blue; 
            ++src; 
      } 
} 

 



You can imagine two additional versions – copying from interleaved to planar and between two planar 

images. If you think four versions are manageable, imagine if we have to deal with multiple color spaces 

such as LAB, CMYK, Grayscale, which would require taking a different number of parameters. Imagine if 

we have to support different ordering of the channels (for example, copying from RGB into a BGR image) 

We will have to write dozens of versions of copy. Of course, copy is only one algorithm; the real pain 

comes when we have to create and maintain many versions of many different algorithms. 

The GIL Version 
 

While images vary widely in representation, conceptually they are simply a grid of pixels. If we think of an 

image as a grid of pixels, and the pixel as a container of channels, we can write our algorithms only once. 

Here is one way to write copy_pixels in GIL: 

 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
   std::copy(src.begin(), src.end(), dst.begin()); 
} 

 

If you are familiar with the STL, GIL will be easy to pick up. GIL makes a distinction between an image 

and a view. An image is a container of pixels. It owns the memory for the pixels and has a deep copy 

constructor. It is similar to std::vector. An image view is a shallow reference to a 2D grid of pixels. 

Views are lightweight and fast to construct and their copy constructors don’t copy the pixels.1 The STL 

equivalent of a GIL view is a range, which is often denoted with a pair of iterators. Most GIL algorithms 

operate on image views, just like most STL algorithms operate on ranges. 

 

copy_pixels requires that the two views have the same dimensions, and that the destination be mutable. 

It also requires that the two views be compatible (which means they must have the same color space and 

channel type). Some of these requirements can be specified at compile time, and others must be done at run 

time: 

 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
    boost::function_requires<ImageViewConcept<SrcView> >(); 
    boost::function_requires<MutableImageViewConcept<DstView> >(); 
    boost::function_requires<ViewsCompatibleConcept<SrcView,DstView> >(); 
    assert(src.dimensions() == dst.dimensions()); 
 
    std::copy(src.begin(), src.end(), dst.begin()); 
} 

 

GIL has concept specifications for every construct, from the channel to the image. A concept is a set of 

syntactic requirements and complexity guarantees that a type (or a set of types) must have. For example, 

the first call to function_requires ensures that SrcView is a valid image view. If we attempt to 

instantiate copy_pixels with something else, we will get an error at that line, as opposed to somewhere 

deep in the algorithm.  

 

A type satisfying the concept requirements is said to model the concept. For example, the class 

gil::image_view models ImageViewConcept. GIL algorithms take concepts rather than concrete 

models. This allows you to use the same algorithms with your own models of channels, pixels, pixel 

                                                           
1 Views also don’t propagate their constness to the underlying pixels, which explains why the destination is 

taken as a const reference. Mutability is part of the view type. 



iterators, image views or images. Here is how we can use copy_pixels to copy from an interleaved to a 

planar 16-bit signed CMYK image.2 

 
void copy_cmyk_planar2interleaved(const short* src_cmyk,  
         ptrdiff_t src_row_bytes, 
         short* dst_c, short* dst_m, short* dst_y, short* dst_k, 

         ptrdiff_t dst_row_bytes, 
         size_t width, size_t height)  
{ 
    cmyk16sc_view_t src_view = interleaved_view(width,height, 
                          (const cmyk16s_pixel_t*)src,src_row_bytes); 
    cmyk16s_planar_view_t dst_view = planar_lab_view(width,height,  
                          dst_c, dst_m, dst_y, dst_k, dst_row_bytes); 
    copy_pixels(src_view, dst_view); 
}  

 

The first step is to take the raw data and construct a GIL view from it. While the two views may often have 

different types, they both model ImageViewConcept, and thus provide a common interface that the 

algorithms use. Since views are lightweight, constructing them from raw data has no measurable 

performance implications. A note on the conventions: “cmyk” stands for CMYK color space, “16” stands 

for 16-bit, “s” stands for signed integral channels, “c” stands for constant (immutable) type. 

 

As you can imagine, the same algorithm can be used to copy between images of any color space, channel 

type, ordering of channels and planar/interleaved organization. GIL will not allow us, however, to copy an 

RGB source into an LAB destination or an 8-bit into a 16-bit channel. Most GIL algorithms require that the 

views be compatible, which means they must have the same color space and channel types. This makes 

copy_pixels a lossless operation.3  

  

To see how GIL is used, let’s replace std::copy with an explicit loop: 

 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  

{ 
   typename SrcView::iterator src_it = src.begin(); 
   typename DstView::iterator dst_it = dst.begin(); 
   while (src_it != src.end()) { 
       *dst_it++ = *src_it++; 
   }  

} 

 

Image views provide a random access iterator that iterates through all the pixels of a view in a left-to-right 

inside top-to-bottom order. Its operator++ advances to the next pixel. It properly skips any potential gap 

at the end of a row. Its operator* returns a reference to a pixel. In the case of an interleaved view, the 

pixel reference is the built-in C++ reference (pixel&). Planar views, however, have channels that are 

disjoint in memory. Dereferencing a planar iterator returns a planar pixel reference proxy – a class that 

behaves like a built-in reference4. Regular pixels, as well as pixel reference proxies, model 

PixelConcept. Finally, models of PixelConcept have an operator= that takes another pixel 

concept (not necessarily of the same type, but compatible) and copies its channels. Many pixel-level 

algorithms, such as assignment, copy-construction and equality comparison, perform the same operation for 

each channel. GIL uses compile-time recursion to perform the operation for each channel efficiently, thus 

avoiding the overhead of a loop. Of course, all of this is hidden from the user. 

 

Here is another way to write copy_pixels using std::vector-like interface: 

                                                           
2 The rows of some images may be aligned, which may result in a gap at the end of each row. Thus we take 

the byte distance of the rows as a separate parameter. 
3 You can use copy_and_convert_pixels to copy between incompatible views. 
4 To the degree this is possible in C++. 



 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
    for (size_t i=0; i<src.size(); ++i) 
       dst[i] = src[i]; 

} 

 

While one-dimensional algorithms are simpler to write, they are somewhat suboptimal, because advancing 

the iterator requires an extra check: Are we at the end of a row, so we can skip any padding and go to the 

beginning of the next row? It is more efficient to use two nested loops instead: 

  
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
    for (size_t y=0; y<src.height(); ++y) { 
        typename SrcView::x_iterator src_xit = src.row_begin(y); 
        typename DstView::x_iterator dst_xit = dst.row_begin(y); 
        for (size_t x=0; x<src.width(); ++x) 
            dst_xit[x] = src_xit[x]; 
   } 
} 

 

As the example demonstrates, views also provide x_iterator, an iterator navigating the pixels along a 

row of the image view. Since it doesn’t need to worry about the end of a row, x_iterator is simpler and 

faster. For example, for an interleaved image view, x_iterator is just a pixel pointer. In a planar RGB 

image view x_iterator is a bundle of three pointers, so incrementing it amounts to three pointer 

increments. 

 

GIL also has a y_iterator, an iterator along the column of an image. For an interleaved image, it is just 

a pointer with a step (the distance between two rows). Incrementing the iterator amounts to advancing the 

pointer by the given step. Here is how to write copy_pixels that copies by columns instead of by rows: 

 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
    for (size_t x=0; x<src.width(); ++x) { 
        typename SrcView::y_iterator src_yit = src.col_begin(x); 
        typename DstView::y_iterator dst_yit = dst.col_begin(x); 
        for (size_t y=0; y<src.height(); ++y) 
            dst_yit[y] = src_yit[y]; 
   } 
} 

 

As you can see, all we have to do is switch x with y, row with col and width with height. Image 

views also allow for accessing their pixels given 2D coordinates. Here is another way to write 

copy_pixels: 

 
template <typename SrcView, typename DstView> 
void copy_pixels(const SrcView& src, const DstView& dst)  
{ 
    for (size_t y=0; y<src.height(); ++y) 
        for (size_t x=0; x<src.width(); ++x) 
             dst(x,y) = src(x,y); 
} 

 

While this is convenient, it is suboptimal, because the pixel location will be recomputed every time from its 

coordinates, which involve multiplication and addition. GIL also has a 2D equivalent of an iterator, called a 

locator. It can be advanced both horizontally and vertically and can return the pixel at a 2D offset from the 

current location. 



 

Image Views 
 

Suppose we want to create an upside down copy of the image. One way to do that is to write a new 

algorithm, something like copy_pixels_upside_down. Another way is to use GIL’s image view 

transformation mechanism: 

 
copy_pixels(rotated180_view(src), dst); 

 

    
 

rotated180_view is an example of a GIL image view transformation. An image view transformation 

takes a view and returns another view (possibly of a different type) by changing some of the properties of 

the source. In this case, it returns a view whose first row and column are the last row and column of the 

source, and whose step in x and y is negated. Similarly, GIL provides flipped_left_write_view, 

rotated90cw_view, rotated90ccw_view, rotated180_view, and transposed_view. 

View transformations are shallow and lightweight. They don’t copy the pixels. 

 

View transformations can also perform color conversion or select color planes. For example, here is how to 

copy an image and at the same time convert it into 8-bit grayscale: 

 
// dst must have 8-bit grayscale pixels 
copy_pixels(color_converted_view<gray8_pixel_t>(src), dst); 
 
 

      
color_converted_view takes any source image view and returns an immutable view that is just like 

the source, except has a different color space and channel type. Again, constructing 

color_converted_view  is very fast; the actual color conversion is performed upon pixel access. 

Here is how to copy the (single channel) source into the first channel of the destination: 
 
// src must be grayscale (i.e. single channel view) 
copy_pixels(src, nth_channel_view(dst, 0)); 

 

View transformations can be nested. Here is how to copy the source, scaled down, into the top half of the 

destination, and again, upside down, into the lower half of the destination5: 

                                                           
5 For simplicity we assume the height of the source is even 



 
copy_pixels(subsampled_view(src,1,2),  
    subimage_view(dst, 0,0,              dst.width(), dst.height()/2)); 
 
copy_pixels(rotated180_view(subsampled_view(src,1,2)), 
    subimage_view(dst, 0,dst.height()/2, dst.width(), dst.height()/2)); 

              

subsampled_view is a view that skips pixels horizontally and vertically. In this case it skips every other 

row of the source. subimage_view returns a view of a rectangular area within the source. In this case we 

use it to return a view of the top half and bottom half of the destination: 

        

    
 

Virtual Image Views 
 

GIL’s ImageViewConcept does not require that the image view occupy physical memory. Here is how 

we can take an arbitrary function and construct a virtual image view from it.  

 

First, we create a function object that will be given the pixel coordinates and will return the pixel value (in 

this case, 8-bit grayscale)6: 

 
typedef point2<ptrdiff_t> point_t; 
 
struct virtual_fn : public deref_base<virtual_fn, gray8_pixel_t,    
       gray8_pixel_t, gray8_pixel_t, point_t, gray8_pixel_t, false>  
{ 
    gray8_pixel_t operator()(const point_t& p) const {     
         return gray8_pixel_t((sin(p.x/10.0f)+cos(p.y/10.0f)+2)*64); 
    } 
}; 

 

Then we use the function object to construct a virtual image view, whose size is the same as our source: 

 
typedef virtual_2d_locator<virtual_fn,false> locator_t; 
image_view<locator_t> virt_view(duck_view.dimensions(),locator_t()); 

 

We can now use the virtual view just like any other. For example, here is how to copy the function into the 

first (the red) channel of the sample image:  

 
rgb8_view_t duck_view = …; 
copy_pixels(virt_view, nth_channel_view(duck_view,0)); 

 

Here is the result of this operation: 

 

 

                                                           
6 Please refer to the GIL documentation for details on the parameters 



    
 

Dynamic Images  
 

Some of the GIL image properties, such as its color space, layout and channel type, are part of the image 

type. We must know these properties at compile time if we want to achieve performance comparable to 

hand-writing the code for a specific image type. Unfortunately, sometimes these image properties are not 

available at compile time. For example, it would be difficult to create a function that reads an image from 

file and returns it in its native form. GIL’s dynamic_image extension allows us to specify the image 

parameters at run time without compromising performance. Here is an example of using GIL’s 

dynamic_image and I/O extensions to read an image from file in its native format: 

 
#include <boost/gil/extension/dynamic_image/dynamic_image_all.hpp> 
#include <boost/gil/extension/io/jpeg_dynamic_io.hpp> 
#include <boost/mpl/vector.hpp> 
using namespace boost; 
 
typedef mpl::vector<rgb8_image_t,  rgb16_image_t,  
                    gray8_image_t, gray16_image_t> img_types; 
typedef gil::any_image<img_types> my_any_image_t; 
 

my_any_image_t dyn_img; 
gil::jpeg_read_image("test.jpg", dyn_img); 
my_any_image_t::view_t dyn_view = gil::view(dyn_img); 

 

While the image type is specified at run time, we still have to define the set of possible types the image 

could have. In this case, we are using Boost MPL to specify that the image could be a Grayscale or an 

RGB, and its depth could be 8 or 16 bit. 

 

We then construct an instance of the image and use the GIL I/O extension to read it from a file. If the image 

on file is not compatible to any of the four possible types, the I/O code throws an exception.  

 

GIL uses the Variant idiom to provide runtime polymorphism. The class any_image internally contains a 

buffer large enough to store any of the four images and an index specifying the current image. Invoking an 

operation on the image requires a switch statement followed by casting the image to the given type and 

invoking the operation. GIL tries to hide all of this machinery and provides an interface consistent with an 

image. For example, we can get an image view from the runtime image, which is also a runtime view, the 

same way we do it for compile time images. We can then use the view to call most of the GIL algorithms 

and image view functions. Here is how to write the image to file in its native format, but upside down. The 

code is identical for compile time or run time images: 

 
jpeg_write_view(“test_out.jpg”, flipped_up_down_view(dyn_view)); 

 



Most GIL algorithms can also take runtime views. For example, copy_pixels allows both its source and 

destination to be compile time or run time views.7 

Dynamic images and views result in efficient code, because they instantiate the algorithm for every 

possible combination of types and invoke the appropriate one at run time. Thus, the polymorphic check is 

performed only once per call to the algorithm. Since image algorithms typically run in time at least linear 

on the number of pixels, such a constant overhead results in no measurable effect on performance. 

However, dynamic images have the potential to increase code bloat and compile time. Note also that 

dynamic image views do not model the full requirements of ImageViewConcept. In particular, they 

don’t allow access to the pixels. While polymorphic pixels are possible to implement, they would be too 

slow to use. You will need to provide overloads for your GIL algorithms if you want them to use dynamic 

views, as described in the documentation. 

Performance 
 

One of the most important goals of GIL’s design is performance. GIL’s algorithms often have performance 

overloads to handle specific cases. In our example we wrote copy_pixels to do an explicit loop. This 

loop is a fallback scenario in the real copy_pixels. When invoked for two contiguous interleaved 

views, copy_pixels resolves to memmove. If both views are planar, it resolves to memmove for each 

color plane. If there are gaps at the end of rows, memmove is called for each row. The generic framework 

allows clients to supply their own overloads for algorithms when using their own views or pixels. 

Performance is discussed more in the video tutorial on GIL’s web page where the assembly of GIL and 

non-GIL code is compared. 

Genericity 
 

GIL maintains a clean separation between concepts, models and algorithms. There are concepts describing 

anything from a channel to N-dimensional image. This allows developer A to create a new model of, say, a 

128-bit channel, developer B to create a new image view representing, for example, a space/time slice in a 

video clip, and developer C to provide support for, say, YUV color space. We can then use existing or new 

algorithms, like copy_pixels, to operate on 128-bit YUV space/time slices of video. Furthermore, 

developers A, B and C need not even be aware of each other’s work; all they have to make sure is that their 

models satisfy the corresponding concepts. 

Ease of use 
 

GIL is very easy to integrate in your existing code. It has no external code dependencies, other than Boost, 

of course. It consists of header files only, so it doesn’t require you to link against any library8. It doesn’t 

require you to build Boost either. All you have to do is include the GIL headers and you are good to go. 

GIL is also portable - I have a face detector written with GIL running on my PDA phone. 

 

GIL’s ease of integration means that you don’t have to sacrifice your favorite image library by switching to 

GIL, nor you have to throw away the image processing algorithms you have already invested your time 

developing. You can keep your existing code and use GIL snippets only where appropriate. In fact, one of 

the most common uses of GIL is as a glue between other often incompatible image libraries. 

 

                                                           
7 Recall that copy_pixels is defined only between compatible image views. When dynamic views are 

involved, we can no longer determine at compile time whether the two views are compatible. When called 

on incompatible views, copy_pixels will throw an exception. 
8 If you require I/O support you will need to link against libgpeg, libtiff or libpng. However, there is a third-

party BMP extension that imposes no external dependencies.s 



Future Work 
 

The core GIL library provides a framework for representing any image format, along with a set of models 

implementing many common image formats and a set of fundamental STL-like algorithms. Every context 

in which GIL is used requires domain-specific concepts, models and algorithms. For example, image 

processing and computer vision applications require algorithms like convolution and edge detection. Vector 

graphics applications require scan conversion and type rendering. Video processing requires its own 

concepts and algorithms. GIL has an extension mechanism to support such domain-specific code. We 

already provide two standard extensions to GIL – the i/o extension supports reading and writing images to 

file (currently JPEG, TIFF and PNG). The dynamic image extension allows for images whose type is 

specified at run time. We also have an experimental image-processing extension available as a separate 

download on GIL’s web site. It provides some basic image processing algorithms such as resampling and 

convolution. 

 

GIL is an open source library. We strongly encourage contributions. There are already about half a dozen 

extensions in progress contributed by the open source community, covering topics such as OpenCV and 

Freetype integration, BMP and PNM I/O, drawing antialiased lines, etc. If you would like to contribute to 

GIL please let us know!  

Conclusion 
 

This article provides a high level overview of the Generic Image Library, using one of its algorithms, 

copy_pixels, as a running example. We have demonstrated GIL’s ability to abstract the image 

representation from algorithms operating on images, which allows for the same algorithm to be invoked on 

images of any color space, channel depth and layout, including synthetic images represented by a function 

or images whose type is specified at run time. Using generic programming, we are able to achieve such 

genericity without the need to sacrifice performance.  

 

GIL’s web page http://opensource.adobe.com/gil provides a wealth of information on GIL, including the 

source code, documentation, video tutorial, discussion forum and links to third party extensions. We are 

hoping you will find GIL useful in your work, and we are looking forward to having you join us in adding 

your contribution to the GIL initiative. 
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