This repository has been archived by the owner on Jul 10, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
main_ce.py
executable file
·445 lines (371 loc) · 16.4 KB
/
main_ce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from __future__ import print_function
import argparse
import math
import os
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
# import tensorboard_logger as tb_logger
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms, datasets
from datasets.customCifar import CIFAR10, CIFAR100
from networks.resnet_big import SupCEResNet
from util import AverageMeter
from util import adjust_learning_rate, warmup_learning_rate, accuracy
from util import set_optimizer, save_model
from util import str2bool
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=50,
help='save frequency')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
parser.add_argument('--size', type=int, default=32, help='parameter for crop')
parser.add_argument('--num_workers', type=int, default=16,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=500,
help='number of training epochs')
parser.add_argument('--seed', type=int, default=None)
# optimization
parser.add_argument('--learning_rate', type=float, default=0.2,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='350,400,450',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'imagenet'], help='dataset')
parser.add_argument('--data_folder', type=str, default=None, help='path to custom dataset')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
# parser.add_argument('--data_folder', type=str, default=None, help='path to custom dataset')
parser.add_argument('--exp_name', type=str, default=None, help='set experiment name manually')
parser.add_argument('--use_ssl_augmentations', type=str2bool, default='False')
opt = parser.parse_args()
if opt.seed:
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# set the path according to the environment
if opt.data_folder is None:
opt.data_folder = './datasets/'
opt.model_path = './save/SupCon/{}_models'.format(opt.dataset)
opt.tb_path = './save/SupCon/{}_tensorboard'.format(opt.dataset)
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = 'SupCE_{}_{}_lr_{}_decay_{}_bsz_{}_trial_{}'. \
format(opt.dataset, opt.model, opt.learning_rate, opt.weight_decay,
opt.batch_size, opt.trial)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
if opt.exp_name:
opt.model_name = opt.exp_name
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
if opt.dataset == 'cifar10':
opt.n_cls = 10
elif opt.dataset == 'cifar100':
opt.n_cls = 100
elif opt.dataset == 'imagenet':
opt.n_cls = 1000
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
return opt
def check_exists(path1, path2):
if os.path.exists(path1):
return path1
elif os.path.exists(path2):
return path2
else:
raise Exception('Fodler not found')
def set_loader(opt, retrieval=False, labelset='fine', overwrite_mean_and_std_dataset=None):
# construct data loader
if not overwrite_mean_and_std_dataset is None:
tmp = opt.dataset
opt.dataset = overwrite_mean_and_std_dataset
if opt.dataset == 'cifar10':
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
elif opt.dataset == 'cifar100':
mean = (0.5071, 0.4867, 0.4408)
std = (0.2675, 0.2565, 0.2761)
elif opt.dataset == 'imagenet' or opt.dataset.lower() == 'tiny_imagenet' or opt.dataset == 'tiny_imagenet_inliers' or opt.dataset == 'imagenet_100':
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
if not overwrite_mean_and_std_dataset is None:
opt.dataset = tmp
val_datasets = None
normalize = transforms.Normalize(mean=mean, std=std)
if opt.use_ssl_augmentations:
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
else:
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
if not retrieval:
if (opt.dataset == 'imagenet_100' or opt.dataset == 'AwA2') and not opt.dataset == 'tiny_imagenet':
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(opt.size),
transforms.ToTensor(),
normalize,
])
else:
val_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
else:
if (opt.dataset == 'imagenet_100' or opt.dataset == 'AwA2' or opt.dataset == 'imagenet') and not opt.dataset == 'tiny_imagenet':
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(opt.size),
transforms.ToTensor(),
normalize,
])
else:
val_transform = transforms.Compose([
transforms.Resize(size=opt.size),
transforms.ToTensor(),
normalize,
])
if retrieval:
train_transform = val_transform
if opt.dataset == 'cifar10':
if not retrieval:
train_dataset = CIFAR10(root=opt.data_folder,
transform=train_transform,
download=True,
labelset=labelset)
else:
train_dataset = CIFAR10(root=opt.data_folder,
transform=val_transform,
download=True,
labelset=labelset)
val_dataset = CIFAR10(root=opt.data_folder,
train=False,
transform=val_transform,
labelset=labelset)
elif opt.dataset == 'cifar100':
if not retrieval:
train_dataset = CIFAR100(root=opt.data_folder,
transform=train_transform,
download=True,
labelset=labelset)
else:
train_dataset = CIFAR100(root=opt.data_folder,
transform=val_transform,
download=True,
labelset=labelset)
val_dataset = CIFAR100(root=opt.data_folder,
train=False,
transform=val_transform,
labelset=labelset)
elif opt.dataset == 'imagenet' or opt.dataset.lower() == 'tiny_imagenet' or opt.dataset == 'tiny_imagenet_inliers' or opt.dataset == 'imagenet_100':
if not retrieval:
train_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder, 'train'),
transform=train_transform)
else:
train_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder, 'train'),
transform=val_transform)
val_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder, 'val'),
transform=val_transform)
elif opt.dataset == 'AwA2':
if not retrieval:
train_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder),
transform=train_transform)
else:
train_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder),
transform=val_transform)
val_dataset = datasets.ImageFolder(root=os.path.join(opt.data_folder),
transform=val_transform)
else:
raise ValueError(opt.dataset)
train_sampler = None
if not opt.dataset == 'AwA2':
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler)
else:
train_loader = None
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=256, shuffle=False,
num_workers=8, pin_memory=True)
return train_loader, val_loader
def set_model(opt):
model = SupCEResNet(name=opt.model, num_classes=opt.n_cls)
criterion = torch.nn.CrossEntropyLoss()
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model = model.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
return model, criterion
def train(train_loader, model, criterion, optimizer, epoch, opt):
"""one epoch training"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
label_dict = {}
for i in range(20):
label_dict[i] = []
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
output = model(images)
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
sys.stdout.flush()
return losses.avg, top1.avg
def validate(val_loader, model, criterion, opt):
"""validation"""
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
with torch.no_grad():
end = time.time()
for idx, (images, labels) in enumerate(val_loader):
images = images.float().cuda()
labels = labels.cuda()
bsz = labels.shape[0]
# forward
output = model(images)
if opt.two_heads:
output = output[0]
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1))
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
return losses.avg, top1.avg
def main():
best_acc = 0
opt = parse_option()
# build data loader
train_loader, val_loader = set_loader(opt, labelset='fine')
# build model and criterion
model, criterion = set_model(opt)
val_criterion = criterion
# build optimizer
optimizer = set_optimizer(opt, model)
# tensorboard
# logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
tb_writer = SummaryWriter(log_dir=opt.tb_path)
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, opt)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# tensorboard logger
tb_writer.add_scalar('train_loss', loss, epoch)
tb_writer.add_scalar('train_acc', train_acc, epoch)
tb_writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch)
# evaluation
loss, val_acc = validate(val_loader, model, val_criterion, opt)
tb_writer.add_scalar('val_loss', loss, epoch)
tb_writer.add_scalar('val_acc', val_acc, epoch)
if val_acc > best_acc:
best_acc = val_acc
if epoch % opt.save_freq == 0:
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
# save the last model
save_file = os.path.join(
opt.save_folder, 'last.pth')
save_model(model, optimizer, opt, opt.epochs, save_file)
print('best accuracy: {:.2f}'.format(best_acc))
if __name__ == '__main__':
main()