-
Notifications
You must be signed in to change notification settings - Fork 0
/
diamondgraphs.tex
620 lines (605 loc) · 23.4 KB
/
diamondgraphs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
% Copyright 2021, C. Minz. BSD 3-Clause License.
%
% This file contains the LaTeX code to generate standalone plots for
% the simulation results obtained from the sprinkling simulations,
% see https://github.com/c-minz/diamondsprinkling
%
% Before plotting, data files are generated with the MATLAB code
% provided in the ``diamondsprinkling'' repository, and the simple
% data point tables have to be extracted from the resulting data
% files using the MATLAB code in this repository.
%
% The header of this file is rather long, the main content starts
% at \begin{document}.
%% ##################################################################
%% Package and TikZ libraries:
%% ------------------------------------------------------------------
\documentclass[12pt,tikz]{standalone}
\usepackage[english]{babel}
\usepackage{pgfplots}
\pgfplotsset{compat=1.15}
\usetikzlibrary{%
datavisualization,
datavisualization.formats.functions,
plotmarks
}
\usepackage{colorYork}
%% ##################################################################
%% Graphic parameters, TikZ settings, style sheets:
%% ------------------------------------------------------------------
\pgfkeys{/pgf/number format/.cd,1000 sep={}} % remove 1000-th sep.
\newif\ifdrawdiamondlinklabels
\newif\ifdrawbarlabel
\newif\ifdrawlegend
\newif\ifdrawEvalues
\def\xaxislength{9.0}
\def\yaxislength{5.5}
\def\CSunit{0.300cm}
\def\shapesize{6cm}
\tikzset{event/.style={circle, fill=black, inner sep=0pt, minimum size=0.9mm}}
\tikzset{causalrel/.style={thick, black!50!white}}
\tikzset{shapeinset/.style={draw=black!25!white, thin}}
%% These style sheets require the brand colour scheme of the
%% University of York, defined in the file ``colorYork.sty''.
\pgfdvdeclarestylesheet{pref past criteria}{
1/.style={YorkOrange},
2/.style={YorkBlue},
3/.style={YorkBlack},
4/.style={YorkPurple},
5/.style={YorkDarkBlue},
6/.style={YorkGreen},
default style/.style={black}
}
\colorlet{D2Color}{YorkDarkBlue}
\colorlet{D3Color}{YorkDarkBlue!20!YorkBlue}
\colorlet{D4Color}{YorkGreen}
\colorlet{D5Color}{YorkYellow}
\colorlet{D6Color}{YorkOrange}
\colorlet{D7Color}{YorkRed}
\colorlet{D8Color}{YorkPink}
\pgfdvdeclarestylesheet{dimensions}{
1/.style={D2Color},
2/.style={D3Color},
3/.style={D4Color},
4/.style={D5Color},
5/.style={D6Color},
6/.style={D7Color},
7/.style={D8Color},
default style/.style={YorkBlack}
}
\pgfkeyssetvalue{/bar colors/1}{D2Color}
\pgfkeyssetvalue{/bar colors/2}{D3Color}
\pgfkeyssetvalue{/bar colors/3}{D4Color}
\pgfkeyssetvalue{/bar colors/4}{D5Color}
\pgfkeyssetvalue{/bar colors/5}{D6Color}
\pgfkeyssetvalue{/bar colors/6}{D7Color}
\newcommand*{\setDataNLinearlyIncreasing}{%
\ifcsname dataNa\endcsname\else
\pgfmathsetmacro\dataNa{int( \dataN + 0 * \dataNDelta )}
\fi
\ifcsname dataNb\endcsname\else
\pgfmathsetmacro\dataNb{int( \dataN + 1 * \dataNDelta )}
\fi
\ifcsname dataNc\endcsname\else
\pgfmathsetmacro\dataNc{int( \dataN + 2 * \dataNDelta )}
\fi
\ifcsname dataNd\endcsname\else
\pgfmathsetmacro\dataNd{int( \dataN + 3 * \dataNDelta )}
\fi
\ifcsname dataNe\endcsname\else
\pgfmathsetmacro\dataNe{int( \dataN + 4 * \dataNDelta )}
\fi
\ifcsname dataNf\endcsname\else
\pgfmathsetmacro\dataNf{int( \dataN + 5 * \dataNDelta )}
\fi
}
%% ##################################################################
%% Data formats including modification for bar plots:
%% ------------------------------------------------------------------
%% data format to select points in x-y-ranges:
\def\rangexmin{0.99}
\def\rangexmax{10.0}
\def\rangeymin{1.0}
\def\rangeymax{2.5}
\pgfdeclaredataformat{inrange}
{}{}{#1, #2}{
\pgfmathparse{and( and( greater( #1, \rangexmin ), notgreater( #1, \rangexmax ) ), and( greater( #2, \rangeymin ), notgreater( #2, \rangeymax ) ) )}
\ifnum\pgfmathresult=1
\pgfkeyssetvalue{/data point/x}{#1}
\pgfkeyssetvalue{/data point/y}{#2}
\pgfdatapoint
\else
\relax
\fi
}{}{}
%% data format to cut off large x values:
\pgfdeclaredataformat{xcutoff}
{}{}{#1, #2}{
\pgfmathparse{notgreater( #1, \xaxismax + 1 )}
\ifnum\pgfmathresult=1
\pgfkeyssetvalue{/data point/x}{#1}
\pgfkeyssetvalue{/data point/y}{#2}
\pgfdatapoint
\else
\relax
\fi
}{}{}
%% data format to cut off large x values, strictly positive y values:
\pgfdeclaredataformat{xcutoffypos}
{}{}{#1, #2}{
\pgfmathparse{and(notgreater( #1, \xaxismax + 1 ), greater( #2, 1 ) )}
\ifnum\pgfmathresult=1
\pgfkeyssetvalue{/data point/x}{#1}
\pgfkeyssetvalue{/data point/y}{#2}
\pgfdatapoint
\else
\relax
\fi
}{}{}
%% data format to draw lines for expectation values:
\pgfdeclaredataformat{distribution}
{}{}{#1, #2, #3, #4}{
\pgfmathsetmacro\dresult{int( #1 )}
\ifnum\dresult<\dataDcut
\pgfkeyssetvalue{/data point/x}{#2}
\pgfkeyssetvalue{/data point/y}{#1}
\pgfdatapoint
\pgfmathsetmacro\xresult{( #2 - 1 ) * \xaxislength / \xaxisrange}
\pgfmathsetmacro\yresult{( #1 - \yaxismin ) * \yaxislength / \yaxisrange}
\pgfmathsetmacro\vresult{#3 * \xaxislength / \xaxisrange}
\pgfmathsetmacro\sresult{#4 * \xaxislength / \xaxisrange}
\node[D\dresult Color, fill, circle, minimum size=3pt, inner sep=0pt]
at ( \xresult, \yresult ) {};
\node[D\dresult Color, scale=0.5, inner sep=0pt]
at ( \xresult + 0.25 * \sresult, \yresult ) {$|$};
\draw[D\dresult Color, ultra thick, opacity=0.3]
( \xresult - 0.5 * \vresult + 0.25 * \sresult, \yresult ) -- +( \vresult, 0 );
\fi
}{}{}
%% data format to draw bar chart:
\newcommand*{\drawbar}[4][0]{%
\draw[\pgfkeysvalueof{/bar colors/#2}, thin, fill, fill opacity=0.5]
( #3, #1 ) rectangle +( \barwidth, #4 );%
}
\pgfplotsset{/pgf/number format/barlabelnumber/.style={fixed,precision=3}}
\newcommand*{\drawbarlabel}[2]{%
\ifdrawbarlabel
\pgfmathparse{and( greater( #2, \barlabeltopmin ), notgreater( #2, \barlabeltopmax ) )}
\ifnum\pgfmathresult=1
\node[scale=\barlabelscale, rotate=90, left, white]
at ( \xresult + \baroffset + 0.5 * \barwidth, \yresult ) {\pgfmathprintnumber[barlabelnumber]{#2}};
\fi
\pgfmathparse{and( greater( #2, \barlabelbotmin ), notgreater( #2, \barlabelbotmax ) )}
\ifnum\pgfmathresult=1
\node[scale=\barlabelscale, rotate=90, right, \pgfkeysvalueof{/bar colors/#1}]
at ( \xresult + \baroffset + 0.5 * \barwidth, \yresult ) {\pgfmathprintnumber[barlabelnumber]{#2}};
\fi
\fi
}
\newcommand*{\drawbarlegendlabel}[1]{%
\pgfmathsetmacro\iloopmax{int( 0.6 / \barwidth / 1.5 - 1 )}%
\pgfmathsetmacro\ibarscale{1 / ( \iloopmax + 1 )}%
\foreach \iloop in { 0, ..., \iloopmax }{%
\drawbar[-0.1]{#1}{-0.6 + 1.5 * \iloop * \barwidth}{0.3 - 0.3 * \iloop * \ibarscale}%
}
}
\pgfdeclaredataformat{ybar}
{}{}{#1, #2}{
\pgfmathparse{and( greater( #1, \xaxismin ), notgreater( #1, \xaxismax ) )}
\ifnum\pgfmathresult=1
\pgfmathsetmacro\barindex{int( \pgfkeysvalueof{/data point/set} ) - 1}
\pgfmathsetmacro\baroffset{( -0.5 + \relbargroupoffset + \relbarpadding + \barindex * ( 2 * \relbarpadding + \relbarwidth ) ) * \xbinwidth}
\pgfmathsetmacro\xresult{( #1 - \xaxismin ) * \xaxislength / \xaxisrange}
\pgfmathsetmacro\yresult{min( #2 * \yaxislength / \yaxismax, \yaxislength )}
\pgfmathsetmacro\barlabel{int( \pgfkeysvalueof{/data point/set} )} % \barindex + 1
\drawbar{\barlabel}{\xresult+\baroffset}{\yresult}
\drawbarlabel{\barlabel}{#2}
\fi
}{}{}
\pgfdeclaredataformat{ybarcap}
{}{}{#1, #2}{
\pgfmathparse{and( greater( #1, \xaxismin ), notgreater( #1, \xaxismax ) )}
\ifnum\pgfmathresult=1
\pgfmathsetmacro\barindex{int( \pgfkeysvalueof{/data point/set} ) - 1}
\pgfmathsetmacro\baroffset{( -0.5 + \relbargroupoffset + \relbarpadding + \barindex * ( 2 * \relbarpadding + \relbarwidth ) ) * \xbinwidth}
\pgfmathsetmacro\xresult{( #1 - \xaxismin ) * \xaxislength / \xaxisrange}
\pgfmathsetmacro\yresult{min( #2 * \yaxislength / \yaxismax, \yaxislength )}
\pgfmathsetmacro\barlabel{int( \pgfkeysvalueof{/data point/set} )} % \barindex + 1
\draw[\errorcolor, thick, opacity=0.9]
( \xresult+\baroffset-\barwidth/5, \yresult ) -- +( \barwidth/5, 0 );
\draw[\errorcolor, very thick, opacity=0.15]
( \xresult+\baroffset, \yresult ) -- +( \barwidth, 0 );
\draw[\errorcolor, thick, opacity=0.9]
( \xresult+\baroffset+\barwidth, \yresult ) -- +( \barwidth/5, 0 );
\fi
}{}{}
\pgfdeclaredataformat{ybarleft}
{}{}{#1, #2}{
\pgfmathparse{and( greater( #1, \xaxismin ), notgreater( #1, \xaxissplitfrom ) )}
\ifnum\pgfmathresult=1
\pgfmathsetmacro\barindex{int( \pgfkeysvalueof{/data point/set} ) - 1}
\pgfmathsetmacro\baroffset{( -0.5 + \relbargroupoffset + \relbarpadding + \barindex * ( 2 * \relbarpadding + \relbarwidth ) ) * \xbinwidth}
\pgfmathsetmacro\xresult{( #1 - \xaxismin ) * \xaxislength / 2 / ( \xaxissplitfrom - \xaxismin )}
\pgfmathsetmacro\yresult{min( #2 * \yaxislength / \yaxismax, \yaxislength )}
\pgfmathsetmacro\barlabel{int( \pgfkeysvalueof{/data point/set} )} % \barindex + 1
\drawbar{\barlabel}{\xresult+\baroffset}{\yresult}
\drawbarlabel{\barlabel}{#2}
\fi
}{}{}
\pgfdeclaredataformat{ybarright}
{}{}{#1, #2}{
\pgfmathparse{and( greater( #1, \xaxissplitto ), notgreater( #1, \xaxismax ) )}
\ifnum\pgfmathresult=1
\pgfmathsetmacro\barindex{int( \pgfkeysvalueof{/data point/set} ) - 1}
\pgfmathsetmacro\baroffset{( -0.5 + \relbargroupoffset + \relbarpadding + \barindex * ( 2 * \relbarpadding + \relbarwidth ) ) * \xbinwidth}
\pgfmathsetmacro\xresult{( #1 - \xaxissplitto ) * \xaxislength / 2 / ( \xaxismax - \xaxissplitto )}
\pgfmathsetmacro\yresult{min( #2 * \yaxislength / \yaxismax, \yaxislength )}
\pgfmathsetmacro\barlabel{int( \pgfkeysvalueof{/data point/set} )} % \barindex + 1
\drawbar{\barlabel}{\xresult+\baroffset}{\yresult}
\drawbarlabel{\barlabel}{#2}
\fi
}{}{}
\pgfdeclaredataformat{ybarcombined}
{}{}{#1, #2}{
\ifnum\dataD<\animatedD
\pgfmathsetmacro\thisvalue{#2}
\else
\def\thisvalue{0}
\fi
\ifnum\dataD=\animatedD
\pgfmathsetmacro\thisvalue{\animationscaling*#2}
\fi
\pgfmathparse{equal( int( #1 ), 1 )}
\ifnum\pgfmathresult=1
\pgfmathsetmacro\barindex{int( \pgfkeysvalueof{/data point/set} ) - 1}
\pgfmathsetmacro\baroffset{( -0.5 + \relbargroupoffset + \relbarpadding + \barindex * ( 2 * \relbarpadding + \relbarwidth ) ) * \xbinwidth + ( \dataD - 1 ) * \xbinwidth}
\pgfmathsetmacro\xresult{( #1 - \xaxismin ) * \xaxislength / \xaxisrange}
\pgfmathsetmacro\yresult{min( \thisvalue * \yaxislength / \yaxismax, \yaxislength )}
\pgfmathsetmacro\barlabel{int( \pgfkeysvalueof{/data point/set} )} % \barindex + 1
\drawbar{\barlabel}{\xresult+\baroffset}{\yresult}
\drawbarlabel{\barlabel}{\thisvalue}
\fi
}{}{}
%% ##################################################################
%% Individual plot parameters and plots:
%% ------------------------------------------------------------------
%% Usage: In order to obtain individual plot files, uncomment only
%% the header (after a ###### title comment) and the code
%% block of the individual diagram, as shown with one
% uncommented example below. Change parameters like the
%% dimension of the plotted results by adjusting the main
%% section under the title, for example by changing
%% \def\dataDlabel{1 + 1}
%% for 2-dimensional data to
%% \def\dataDlabel{1 + 2}
%% for 3-dimensional data.
\begin{document}
%% ######
%% ------ plot for cardinality of rank 2 past:
% \pgfplotsset{/pgf/number format/barlabelnumber/.style={fixed,precision=1}}
% \def\dataN{6000}
% \def\dataxlabel{observation region $U_{i}$}
% \def\dataylabel{expected cardinality}
% \def\dataparam{$\langle n \rangle = \dataN$}
% \def\dataname{bicone}
% \def\legendtextshift{-0.4em}
% \def\xaxismin{0}\def\xaxismax{5.99}\def\xbinwidth{1}
% \def\xticksshift{0.5}\def\xaxisticksstep{1}\def\xaxisticksprecision{0}
% \def\yaxismin{0}\def\yaxismax{2100}
% \def\yaxisticksstep{300}\def\yaxisticksprecision{0}
% \def\datadir{data/Diamonds}
% \drawbarlabeltrue\def\barlabelscale{0.65}
% \def\barlabelbotmin{-1}\def\barlabelbotmax{1600}
% \def\barlabeltopmin{1600}\def\barlabeltopmax{\yaxismax}
% \input{figures/Rank2PastBarChart}
%% ######
%% ------ plots for pref. pasts:
% \def\dataN{6000}
% \def\dataDlabel{1 + 3}
% \pgfmathsetmacro\dataD{int(\dataDlabel)}
% \ifnum\dataD<4
% \drawlegendfalse
% \else
% \drawlegendtrue
% \fi
% \def\datavol{3}
% \pgfmathsetmacro\dataObsRegion{int(\datavol - 1)}
% \def\datashape{bicone}
% \def\dataylabel{probability / \%}
% \def\dataformat{xcutoff}
% \def\dataparam{$\langle n \rangle = \dataN$}
%% --- plot number of pref. pasts:
% \drawbarlabeltrue\def\barlabelscale{0.65}
% \def\barlabelbotmin{-1}\def\barlabelbotmax{80}
% \def\barlabeltopmin{80}\def\barlabeltopmax{100}
% \drawEvaluesfalse
% \def\xbinwidth{1}
% \def\xaxismin{1}\def\xticksshift{0.5}
% \def\datadir{data/PrefPasts}
% \def\dataxlabel{cardinality}
% \def\xaxismax{4.99}\def\xaxisticksstep{1}\def\xaxisticksprecision{0}
% \def\yaxismax{100}\def\yaxisticksstep{10}\def\yaxisticksprecision{0}
% \def\legendtextshift{-0.85em}
% \input{figures/PrefPastsBarChart}
%% --- plot proper times of pref. pasts:
% \drawEvaluesfalse
% \def\datadir{data/ProperTimes}
% \def\dataylabel{probability density}
% \def\xaxismax{6.5}\def\xaxisticksstep{0.50}\def\xaxisticksprecision{1}
% \def\yaxismax{6.5}\def\yaxisticksstep{0.50}\def\yaxisticksprecision{1}
% \def\dataxlabel{proper time / $\sqrt[\dataD]{1 / \rho}$}
% \newif\ifshowpinArrowFirst
% \def\pinlen{1.8ex}
% \ifcase\dataD
% \or\or
% \def\pinAxpos{5.95}\def\pinBxpos{1.2}\def\pinCxpos{2.3}
% \def\pinDxpos{4.7}\def\pinExpos{3.7}\def\pinFxpos{3.2}\showpinArrowFirsttrue
% \or
% \def\pinAxpos{5.95}\def\pinBxpos{1.3}\def\pinCxpos{2.8}
% \def\pinDxpos{4.5}\def\pinExpos{3.6}\def\pinFxpos{3.25}\showpinArrowFirsttrue
% \or
% \def\pinAxpos{5.5}\def\pinBxpos{1.3}\def\pinCxpos{2.8}
% \def\pinDxpos{5.5}\def\pinExpos{4.5}\def\pinFxpos{3.3}\showpinArrowFirstfalse
% \fi
% \input{figures/PrefPasts}
%% --- plot unit hyperboloid distribution of pref. pasts:
% \def\dataparam{obs.\ region $U_{\dataObsRegion}$}
% \def\dataxlabel{$\rho_{\dataDlabel}$}
% \def\datadir{data/UnitHyperboloid}
% \def\dataylabel{probability density}
% \def\xaxismax{15.0}\def\xaxisticksstep{1.0}\def\xaxisticksprecision{0}
% \def\yaxismax{5.0}\def\yaxisticksstep{0.5}\def\yaxisticksprecision{1}
% \newif\ifshowpinArrowFirst\showpinArrowFirstfalse
% \def\pinlen{1.8ex}
% \def\pinAxpos{0}\def\pinBxpos{0}\def\pinCxpos{0}
% \def\pinDxpos{0}\def\pinExpos{0}\def\pinFxpos{0}
% \ifcase\dataD
% \or\or
% \def\pinAxpos{2.60}
% \or
% \def\pinAxpos{1.50}\def\pinBxpos{12.50}
% \def\pinDxpos{2.10}\def\pinFxpos{7.50}
% \or
% \def\pinAxpos{1.50}\def\pinBxpos{12.50}\def\pinCxpos{2.40}
% \def\pinDxpos{1.40}\def\pinExpos{1.30}\def\pinFxpos{5.90}
% \fi
% \input{figures/PrefPastsHyperb}
%% --- scatter plot unit hyperboloid of pref. pasts:
% \def\markersize{0.7pt}
% \def\markeropacity{0.5}
% \def\datadir{data/UnitHyperboloid}
% \def\dataCri{6}
% \def\dataxlabel{$x / \tau$}
% \def\dataylabel{$y / \tau$}
% \def\datazlabel{$z / \tau$}
% \ifcase\dataD
% \or\or\or
% \def\xaxislength{5.5}
% \def\xaxismax{2.3}\def\xaxisticksstep{1.0}\def\xaxisticksprecision{0}
% \input{figures/PrefPastsScatterD2}
% \or
% \def\xaxislength{3.6}
% \def\xaxismax{1.35}\def\xaxisticksstep{0.6}\def\xaxisticksprecision{1}
% \input{figures/PrefPastsScatterD3}
% \fi
%% ######
%% ------ plot diamonds:
\drawdiamondlinklabelstrue
\drawEvaluestrue
\newif\ifdrawshapesgeodesiclegend
\def\dataN{2000}
\def\datalabel{probability / \%}
\def\dataxlabel{}
\def\dataformat{xcutoff}
\def\xbinwidth{1}
\def\xaxismin{1}\def\xticksshift{0.5}
\def\dataparam{$\langle n \rangle = \dataN$}
%% --- plot diamonds of pref. futures:
% \def\dataNcount{1}
% \def\dataNa{6000}
% \def\dataNb{4000}
% \def\dataNc{2000}
% \def\dataDlabel{1 + 1}
% \pgfmathsetmacro\dataD{int(\dataDlabel)}
% \def\dataNaPadding{~\phantom{.0}}
% \def\dataNbPadding{~\phantom{.0}}
% \def\dataNcPadding{~\phantom{.0}}
% \def\datadir{data/Diamonds}
% \def\criterion{6}
% \def\dataparam{$\langle n \rangle = \dataN$\\criterion \criterion}
% \def\dataname{biconeCri\criterion Min1} % min. $\lozenge^\cdot$
% \def\legendlabel{fraction / \%}
% \def\xaxismax{17.95}\def\xaxisticksstep{1}
% \def\yaxismax{35.0}\def\yaxisticksstep{5.00}\def\yaxisticksprecision{0}
% \input{figures/DiamondsBarChart}
%% --- plot diamonds along timelike geodesics:
\drawshapesgeodesiclegendtrue
\def\dataNDelta{3000}
\def\dataNa{80}
\def\dataNf{17000}
\drawbarlabeltrue\def\barlabelscale{0.65}
\def\barlabelbotmin{-1}\def\barlabelbotmax{70}
\def\barlabeltopmin{70}\def\barlabeltopmax{100}
\def\dataname{biconeArr3Vol1Srlsum}
\def\xaxismin{1}\def\xaxismax{7.99}\def\xaxisticksstep{1}
\def\yaxismax{90}\def\yaxisticksstep{10}\def\yaxisticksprecision{0}
\def\datadir{data/Diamonds}
\input{figures/DiamondsChainsBarChart}
%% --- plot diamonds for total rank 2 past:
% \drawshapesgeodesiclegendfalse
% \def\datalabel{expected cardinality}
% \drawbarlabelfalse\def\barlabelscale{0.65}
% \def\barlabelbotmin{-1}\def\barlabelbotmax{70}
% \def\barlabeltopmin{70}\def\barlabeltopmax{100}
% \def\dataname{biconeArr1Vol3}
% \def\xaxismin{1}\def\xaxismax{20.98}\def\xaxisticksstep{2}
% \def\yaxismax{16}\def\yaxisticksstep{2}\def\yaxisticksprecision{0}
% \def\datadir{data/Diamonds}
% \input{figures/DiamondsChainsBarChart}
%% ######
%% ------ plot proper time distributions along timelike geodesics:
\drawEvaluestrue
\def\dataN{2000}
\def\dataNDelta{3000}
\def\dataNa{80}
\def\datalabel{probability density}
\def\dataxlabel{proper time / $\sqrt[d]{1 / \rho}$}
\def\dataformat{xcutoff}
\def\dataparam{$\langle n \rangle = \dataN$}
\def\datadir{data/ProperTimes}
\drawdiamondlinklabelsfalse
\def\xbinwidth{0.05}
\def\xaxismin{1}\def\xticksshift{0}
\def\dataname{biconeArr3Vol1}
\def\xaxismin{0}\def\xaxismax{3.75}\def\xaxisticksstep{0.3}\def\xaxisticksprecision{1}
\def\yaxismax{4.5}\def\yaxisticksstep{0.5}\def\yaxisticksprecision{1}
\def\pinlen{1.0ex}
\def\pinAxpos{0.5}\def\pinBxpos{0.0}\def\pinCxpos{0.0}
\def\pinDxpos{0.0}\def\pinExpos{0.0}\def\pinFxpos{0.0}
\input{figures/DiamondsChains}
%% ######
%% ------ plot diamond time curves:
%% NIntegrate with Mathematica 12.1 and the options:
% \def\dataSource{} % PrecisionGoal -> 5
% \def\dataSource{QMC} % PrecisionGoal -> 10, WorkingPrecision -> 20, Method -> "QuasiMonteCarlo"
% \drawdiamondlinklabelstrue
% \def\datadir{data/DiamondTimes}
% \def\dataN{6000}
% \def\dataparam{$\langle n \rangle = \dataN$}
% \def\dataname{biconeVol1}
% \def\datalabel{expected proper time / $\sqrt[d]{1 / \rho}$}
% \def\dataformat{xcutoffypos}
% \drawdiamondlinklabelstrue
% \def\yaxismin{1.5}\def\yaxismax{5.5}\def\yaxisticksstep{0.5}\def\yaxisticksprecision{1}
% \def\xaxismax{28.0}\def\xaxisticksstep{2}
% \def\alphaA{2}\def\alphaB{3.8197}\def\alphaC{7.6394}
% \def\shapescaling{0.12}
% \pgfmathsetmacro\shapeposA{( \yaxismax^2 - 1 ) / \alphaA / \xaxismax}
% \pgfmathsetmacro\shapeposB{( ( \alphaB * \xaxismax + 1 )^(1/3) - \yaxismin ) / ( \yaxismax - \yaxismin )}
% \pgfmathsetmacro\shapeposC{( ( \alphaC * \xaxismax + 1 )^(1/4) - \yaxismin ) / ( \yaxismax - \yaxismin )}
% \input{figures/DiamondTimes}
%% ######
%% ------ plot diamond size curves:
% \drawdiamondlinklabelstrue
% \def\datadir{data/Diamonds}
% \def\dataN{6000}
% \def\dataDcut{7}
% \def\dataparam{$\langle n \rangle = \dataN$}
% \def\dataname{DiamondMomentsCri6Min1Vol6L2}
% \def\datalabel{dimension}
% \def\dataformat{distribution}
% \drawdiamondlinklabelstrue
% \pgfmathsetmacro\yaxismax{\dataDcut - 0.5}
% \def\yaxismin{1.5}\def\yaxisticksstep{1.0}\def\yaxisticksprecision{0}
% \def\xaxismin{1.0}\def\xaxismax{35.0}\def\xaxisticksstep{3}
% \def\shapescaling{0.12}
% \input{figures/DiamondSizes}
%% ##################################################################
%% Further unused plots:
%% ------------------------------------------------------------------
%% ######
%% ------ plots for pref. pasts:
% \def\dataN{6000}
% \def\dataDlabel{1 + 1}
% \pgfmathsetmacro\dataD{int(\dataDlabel)}
% \ifnum\dataD<4
% \drawlegendfalse
% \else
% \drawlegendtrue
% \fi
% \def\datavol{3}
% \pgfmathsetmacro\dataObsRegion{int(\datavol - 1)}
% \def\datashape{bicone}
% \def\dataylabel{probability / \%}
% \def\dataformat{xcutoff}
% \def\dataparam{$\langle n \rangle = \dataN$}
%% --- plot unit hyperboloid speed distribution of pref. pasts:
% \def\dataparam{obs.\ region $U_{\dataObsRegion}$}
% \def\datadir{data/UnitHyperboloidSpeed}
% \def\xaxismax{1.0}\def\xaxisticksstep{0.1}\def\xaxisticksprecision{1}
% \def\yaxismax{10.0}\def\yaxisticksstep{1.0}\def\yaxisticksprecision{0}
% \def\dataxlabel{relative speed / $c$}
% \newif\ifshowpinArrowFirst
% \def\pinlen{1.8ex}
% \def\pinAxpos{0}\def\pinBxpos{0}\def\pinCxpos{0}
% \def\pinDxpos{0}\def\pinExpos{0}\def\pinFxpos{0}
% \ifcase\dataD
% \or\or
% \def\pinAxpos{0.18}
% \or
% \def\pinAxpos{0.18}\def\pinBxpos{0.95}
% \or
% \def\pinAxpos{0.2}\def\pinBxpos{0.9}
% \fi
% \input{figures/PrefPastsHyperb}
%% --- plot number of pref. pasts (combined):
% \def\xaxislength{8}
% \def\dataparam{$\langle n \rangle = \dataN$}
% \drawbarlabeltrue\def\barlabelscale{0.65}
% \def\barlabelbotmin{-1}\def\barlabelbotmax{80}
% \def\barlabeltopmin{80}\def\barlabeltopmax{100}
% \def\xbinwidth{1}
% \def\xaxismin{2}\def\xticksshift{0.5}
% \def\datadir{data/PrefPasts}
% \def\dataxlabel{spacetime dimension}
% \def\xaxismax{4.99}\def\xaxisticksstep{1}\def\xaxisticksprecision{0}
% \def\yaxismax{100}\def\yaxisticksstep{10}\def\yaxisticksprecision{0}
% \foreach \animatedD in {2,3,4}{%
% \foreach \animationscaling in {0,0.05,0.1,...,1.01}{%
% \input{figures/PrefPastsBarChartCombined}
% }
% }
%% ######
%% ------ plot dimensions:
% \def\dataN{600}
% \def\datalabel{probability / \%}
% \def\dataformat{xcutoff}
%% --- plot dimension along chains:
% \def\dataarr{2}
% \def\datavol{1}
% \def\datashape{bicone}
% \def\xaxismax{5}\def\xaxisticksstep{0.5}\def\xaxisticksprecision{1}
% \def\yaxismax{80}\def\yaxisticksstep{10}\def\yaxisticksprecision{0}
% \def\datadir{data/Dimensions}
% \input{figures/DimensionsChains}
%% --- plot dimension of entire causet:
% \def\dataparam{$n = \dataN$}
% \def\dataname{biconeArr1Vol1}
% \def\xaxismin{-0.1}\def\xticksshift{0}\def\xbinwidth{0.04}
% \def\xaxismax{2.4}\def\xaxisticksstep{0.2}\def\xaxisticksprecision{1}
% \def\yaxismax{36}\def\yaxisticksstep{3}\def\yaxisticksprecision{0}
% \def\datadir{data/Dimensions}
% \input{figures/DimensionsBarChart}
%% --- plot dimension of pref. futures:
% \def\dataparam{max. $\lozenge$}\def\dataname{biconeCri1Min1Vol3}\def\yaxismax{50}\def\yaxisticksstep{5}
% \def\dataparam{min. $\lozenge^\dagger$}\def\dataname{biconeCri2Min1Vol3}\def\yaxismax{45}\def\yaxisticksstep{5}
% \def\dataparam{min. $\lozenge^\ddagger$}\def\dataname{biconeCri3Min1Vol3}\def\yaxismax{100}\def\yaxisticksstep{10}
% \def\dataparam{max. $\lozenge^\dagger$}\def\dataname{biconeCri4Min1Vol3}\def\yaxismax{40}\def\yaxisticksstep{5}
% \def\dataparam{min. $\lozenge^\cdot$}\def\dataname{biconeCri5Min1Vol3}\def\yaxismax{50}\def\yaxisticksstep{5}
% \def\dataparam{max. $\lozenge^\ddagger$}\def\dataname{biconeCri6Min1Vol3}\def\yaxismax{80}\def\yaxisticksstep{10}
% \def\xaxismax{5}\def\xaxisticksstep{0.5}\def\xaxisticksprecision{1}
% \def\yaxisticksprecision{0}
% \def\datadir{data/Dimensions}
% \input{figures/Dimensions}
%% ######
%% ------ plot simplexes:
% \def\dataD{2}\def\dataN{200}
% \def\dataD{3}\def\dataN{500}
% \def\dataD{4}\def\dataN{2000}
% \def\subdataN{100}
% \def\datashape{bicone}
% \def\datalabel{probability / \%}
% \def\datadir{data/Dimensions}
% \drawbarlabelfalse\def\barlabelscale{0.5}
% \def\barlabelbotmin{0}\def\barlabelbotmax{1}
% \def\barlabeltopmin{80}\def\barlabeltopmax{100}
% % --- plot simplexes of entire causet:
% \def\dataparam{$\langle n \rangle = \subdataN$}
% \def\xaxismin{-0.5}\def\xaxismax{100}
% \def\xaxissplitfrom{1.5}\def\xaxissplitto{98.0}\def\xaxisticksstep{0.5}
% \def\xticksshift{0}\def\xbinwidth{0.5}
% \def\xaxisticksprecision{1}\def\yaxisticksprecision{0}
% \def\yaxismax{100}\def\yaxisticksstep{10}
% \def\dataname{biconeVol1}
% \input{figures/SimplicesSplit}
\end{document}