-
Notifications
You must be signed in to change notification settings - Fork 57
/
convConst.cpp
283 lines (266 loc) · 11.3 KB
/
convConst.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*******************************************************************************
* Piotr's Computer Vision Matlab Toolbox Version 3.24
* Copyright 2014 Piotr Dollar & Ron Appel. [pdollar-at-gmail.com]
* Licensed under the Simplified BSD License [see external/bsd.txt]
*******************************************************************************/
#include "wrappers.hpp"
#include <string.h>
#include "sse.hpp"
// convolve one column of I by a 2rx1 ones filter
void convBoxY( float *I, float *O, int h, int r, int s ) {
float t; int j, p=r+1, q=2*h-(r+1), h0=r+1, h1=h-r, h2=h;
t=0; for(j=0; j<=r; j++) t+=I[j]; t=2*t-I[r]; j=0;
if( s==1 ) {
for(; j<h0; j++) O[j]=t-=I[r-j]-I[r+j];
for(; j<h1; j++) O[j]=t-=I[j-p]-I[r+j];
for(; j<h2; j++) O[j]=t-=I[j-p]-I[q-j];
} else {
int k=(s-1)/2; h2=(h/s)*s; if(h0>h2) h0=h2; if(h1>h2) h1=h2;
for(; j<h0; j++) { t-=I[r-j]-I[r+j]; k++; if(k==s) { k=0; *O++=t; } }
for(; j<h1; j++) { t-=I[j-p]-I[r+j]; k++; if(k==s) { k=0; *O++=t; } }
for(; j<h2; j++) { t-=I[j-p]-I[q-j]; k++; if(k==s) { k=0; *O++=t; } }
}
}
// convolve I by a 2r+1 x 2r+1 ones filter (uses SSE)
void convBox( float *I, float *O, int h, int w, int d, int r, int s ) {
float nrm = 1.0f/((2*r+1)*(2*r+1)); int i, j, k=(s-1)/2, h0, h1, w0;
if(h%4==0) h0=h1=h; else { h0=h-(h%4); h1=h0+4; } w0=(w/s)*s;
float *T=(float*) alMalloc(h1*sizeof(float),16);
while(d-- > 0) {
// initialize T
memset( T, 0, h1*sizeof(float) );
for(i=0; i<=r; i++) for(j=0; j<h0; j+=4) INC(T[j],LDu(I[j+i*h]));
for(j=0; j<h0; j+=4) STR(T[j],MUL(nrm,SUB(MUL(2,LD(T[j])),LDu(I[j+r*h]))));
for(i=0; i<=r; i++) for(j=h0; j<h; j++ ) T[j]+=I[j+i*h];
for(j=h0; j<h; j++ ) T[j]=nrm*(2*T[j]-I[j+r*h]);
// prepare and convolve each column in turn
k++; if(k==s) { k=0; convBoxY(T,O,h,r,s); O+=h/s; }
for( i=1; i<w0; i++ ) {
float *Il=I+(i-1-r)*h; if(i<=r) Il=I+(r-i)*h;
float *Ir=I+(i+r)*h; if(i>=w-r) Ir=I+(2*w-r-i-1)*h;
for(j=0; j<h0; j+=4) DEC(T[j],MUL(nrm,SUB(LDu(Il[j]),LDu(Ir[j]))));
for(j=h0; j<h; j++ ) T[j]-=nrm*(Il[j]-Ir[j]);
k++; if(k==s) { k=0; convBoxY(T,O,h,r,s); O+=h/s; }
}
I+=w*h;
}
alFree(T);
}
// convolve one column of I by a [1; 1] filter (uses SSE)
void conv11Y( float *I, float *O, int h, int side, int s ) {
#define C4(m,o) ADD(LDu(I[m*j-1+o]),LDu(I[m*j+o]))
int j=0, k=((~((size_t) O) + 1) & 15)/4;
const int d = (side % 4 >= 2) ? 1 : 0, h2=(h-d)/2;
if( s==2 ) {
for( ; j<k; j++ ) O[j]=I[2*j+d]+I[2*j+d+1];
for( ; j<h2-4; j+=4 ) STR(O[j],_mm_shuffle_ps(C4(2,d+1),C4(2,d+5),136));
for( ; j<h2; j++ ) O[j]=I[2*j+d]+I[2*j+d+1];
if(d==1 && h%2==0) O[j]=2*I[2*j+d];
} else {
if(d==0) { O[0]=2*I[0]; j++; if(k==0) k=4; }
for( ; j<k; j++ ) O[j]=I[j-1+d]+I[j+d];
for( ; j<h-4-d; j+=4 ) STR(O[j],C4(1,d) );
for( ; j<h-d; j++ ) O[j]=I[j-1+d]+I[j+d];
if(d==1) { O[j]=2*I[j]; j++; }
}
#undef C4
}
// convolve I by a [1 1; 1 1] filter (uses SSE)
void conv11( float *I, float *O, int h, int w, int d, int side, int s ) {
const float nrm = 0.25f; int i, j;
float *I0, *I1, *T = (float*) alMalloc(h*sizeof(float),16);
for( int d0=0; d0<d; d0++ ) for( i=s/2; i<w; i+=s ) {
I0=I1=I+i*h+d0*h*w; if(side%2) { if(i<w-1) I1+=h; } else { if(i) I0-=h; }
for( j=0; j<h-4; j+=4 ) STR( T[j], MUL(nrm,ADD(LDu(I0[j]),LDu(I1[j]))) );
for( ; j<h; j++ ) T[j]=nrm*(I0[j]+I1[j]);
conv11Y(T,O,h,side,s); O+=h/s;
}
alFree(T);
}
// convolve one column of I by a 2rx1 triangle filter
void convTriY( float *I, float *O, int h, int r, int s ) {
r++; float t, u; int j, r0=r-1, r1=r+1, r2=2*h-r, h0=r+1, h1=h-r+1, h2=h;
u=t=I[0]; for( j=1; j<r; j++ ) u+=t+=I[j]; u=2*u-t; t=0;
if( s==1 ) {
O[0]=u; j=1;
for(; j<h0; j++) O[j] = u += t += I[r-j] + I[r0+j] - 2*I[j-1];
for(; j<h1; j++) O[j] = u += t += I[j-r1] + I[r0+j] - 2*I[j-1];
for(; j<h2; j++) O[j] = u += t += I[j-r1] + I[r2-j] - 2*I[j-1];
} else {
int k=(s-1)/2; h2=(h/s)*s; if(h0>h2) h0=h2; if(h1>h2) h1=h2;
if(++k==s) { k=0; *O++=u; } j=1;
for(;j<h0;j++) { u+=t+=I[r-j] +I[r0+j]-2*I[j-1]; if(++k==s){ k=0; *O++=u; }}
for(;j<h1;j++) { u+=t+=I[j-r1]+I[r0+j]-2*I[j-1]; if(++k==s){ k=0; *O++=u; }}
for(;j<h2;j++) { u+=t+=I[j-r1]+I[r2-j]-2*I[j-1]; if(++k==s){ k=0; *O++=u; }}
}
}
// convolve I by a 2rx1 triangle filter (uses SSE)
void convTri( float *I, float *O, int h, int w, int d, int r, int s ) {
r++; float nrm = 1.0f/(r*r*r*r); int i, j, k=(s-1)/2, h0, h1, w0;
if(h%4==0) h0=h1=h; else { h0=h-(h%4); h1=h0+4; } w0=(w/s)*s;
float *T=(float*) alMalloc(2*h1*sizeof(float),16), *U=T+h1;
while(d-- > 0) {
// initialize T and U
for(j=0; j<h0; j+=4) STR(U[j], STR(T[j], LDu(I[j])));
for(i=1; i<r; i++) for(j=0; j<h0; j+=4) INC(U[j],INC(T[j],LDu(I[j+i*h])));
for(j=0; j<h0; j+=4) STR(U[j],MUL(nrm,(SUB(MUL(2,LD(U[j])),LD(T[j])))));
for(j=0; j<h0; j+=4) STR(T[j],0);
for(j=h0; j<h; j++ ) U[j]=T[j]=I[j];
for(i=1; i<r; i++) for(j=h0; j<h; j++ ) U[j]+=T[j]+=I[j+i*h];
for(j=h0; j<h; j++ ) { U[j] = nrm * (2*U[j]-T[j]); T[j]=0; }
// prepare and convolve each column in turn
k++; if(k==s) { k=0; convTriY(U,O,h,r-1,s); O+=h/s; }
for( i=1; i<w0; i++ ) {
float *Il=I+(i-1-r)*h; if(i<=r) Il=I+(r-i)*h; float *Im=I+(i-1)*h;
float *Ir=I+(i-1+r)*h; if(i>w-r) Ir=I+(2*w-r-i)*h;
for( j=0; j<h0; j+=4 ) {
INC(T[j],ADD(LDu(Il[j]),LDu(Ir[j]),MUL(-2,LDu(Im[j]))));
INC(U[j],MUL(nrm,LD(T[j])));
}
for( j=h0; j<h; j++ ) U[j]+=nrm*(T[j]+=Il[j]+Ir[j]-2*Im[j]);
k++; if(k==s) { k=0; convTriY(U,O,h,r-1,s); O+=h/s; }
}
I+=w*h;
}
alFree(T);
}
// convolve one column of I by a [1 p 1] filter (uses SSE)
void convTri1Y( float *I, float *O, int h, float p, int s ) {
#define C4(m,o) ADD(ADD(LDu(I[m*j-1+o]),MUL(p,LDu(I[m*j+o]))),LDu(I[m*j+1+o]))
int j=0, k=((~((size_t) O) + 1) & 15)/4, h2=(h-1)/2;
if( s==2 ) {
for( ; j<k; j++ ) O[j]=I[2*j]+p*I[2*j+1]+I[2*j+2];
for( ; j<h2-4; j+=4 ) STR(O[j],_mm_shuffle_ps(C4(2,1),C4(2,5),136));
for( ; j<h2; j++ ) O[j]=I[2*j]+p*I[2*j+1]+I[2*j+2];
if( h%2==0 ) O[j]=I[2*j]+(1+p)*I[2*j+1];
} else {
O[j]=(1+p)*I[j]+I[j+1]; j++; if(k==0) k=(h<=4) ? h-1 : 4;
for( ; j<k; j++ ) O[j]=I[j-1]+p*I[j]+I[j+1];
for( ; j<h-4; j+=4 ) STR(O[j],C4(1,0));
for( ; j<h-1; j++ ) O[j]=I[j-1]+p*I[j]+I[j+1];
O[j]=I[j-1]+(1+p)*I[j];
}
#undef C4
}
// convolve I by a [1 p 1] filter (uses SSE)
void convTri1( float *I, float *O, int h, int w, int d, float p, int s ) {
const float nrm = 1.0f/((p+2)*(p+2)); int i, j, h0=h-(h%4);
float *Il, *Im, *Ir, *T=(float*) alMalloc(h*sizeof(float),16);
for( int d0=0; d0<d; d0++ ) for( i=s/2; i<w; i+=s ) {
Il=Im=Ir=I+i*h+d0*h*w; if(i>0) Il-=h; if(i<w-1) Ir+=h;
for( j=0; j<h0; j+=4 )
STR(T[j],MUL(nrm,ADD(ADD(LDu(Il[j]),MUL(p,LDu(Im[j]))),LDu(Ir[j]))));
for( j=h0; j<h; j++ ) T[j]=nrm*(Il[j]+p*Im[j]+Ir[j]);
convTri1Y(T,O,h,p,s); O+=h/s;
}
alFree(T);
}
// convolve one column of I by a 2rx1 max filter
void convMaxY( float *I, float *O, float *T, int h, int r ) {
int y, y0, y1, yi, m=2*r+1;
#define max1(a,b) a>b ? a : b;
#define maxk(y0,y1) { O[y]=I[y0]; \
for( yi=y0+1; yi<=y1; yi++ ) { if(I[yi]>O[y]) O[y]=I[yi]; }}
for( y=0; y<r; y++ ) { y1=y+r; if(y1>h-1) y1=h-1; maxk(0,y1); }
for( ; y<=h-m-r; y+=m ) {
T[m-1] = I[y+r];
for( yi=1; yi<m; yi++ ) T[m-1-yi] = max1( T[m-1-yi+1], I[y+r-yi] );
for( yi=1; yi<m; yi++ ) T[m-1+yi] = max1( T[m-1+yi-1], I[y+r+yi] );
for( yi=0; yi<m; yi++ ) O[y+yi] = max1( T[yi], T[yi+m-1] );
}
for( ; y<h-r; y++ ) { maxk(y-r,y+r); }
for( ; y<h; y++ ) { y0=y-r; if(y0<0) y0=0; maxk(y0,h-1); }
#undef maxk
#undef max1
}
// convolve I by a 2rx1 max filter
void convMax( float *I, float *O, int h, int w, int d, int r ) {
if( r>w-1 ) r=w-1; if( r>h-1 ) r=h-1; int m=2*r+1;
float *T=(float*) alMalloc(m*2*sizeof(float),16);
for( int d0=0; d0<d; d0++ ) for( int x=0; x<w; x++ ) {
float *Oc=O+d0*h*w+h*x, *Ic=I+d0*h*w+h*x;
convMaxY(Ic,Oc,T,h,r);
}
alFree(T);
}
// convolve one column of I by a 2rx1 min filter
void convMinY( float *I, float *O, float *T, int h, int r ) {
int y, y0, y1, yi, m=2*r+1;
#define min1(a,b) a<b ? a : b;
#define mink(y0,y1) { O[y]=I[y0]; \
for( yi=y0+1; yi<=y1; yi++ ) { if(I[yi]<O[y]) O[y]=I[yi]; }}
for( y=0; y<r; y++ ) { y1=y+r; if(y1>h-1) y1=h-1; mink(0,y1); }
for( ; y<=h-m-r; y+=m ) {
T[m-1] = I[y+r];
for( yi=1; yi<m; yi++ ) T[m-1-yi] = min1( T[m-1-yi+1], I[y+r-yi] );
for( yi=1; yi<m; yi++ ) T[m-1+yi] = min1( T[m-1+yi-1], I[y+r+yi] );
for( yi=0; yi<m; yi++ ) O[y+yi] = min1( T[yi], T[yi+m-1] );
}
for( ; y<h-r; y++ ) { mink(y-r,y+r); }
for( ; y<h; y++ ) { y0=y-r; if(y0<0) y0=0; mink(y0,h-1); }
#undef mink
#undef min1
}
// convolve I by a 2rx1 min filter
void convMin( float *I, float *O, int h, int w, int d, int r ) {
if( r>w-1 ) r=w-1; if( r>h-1 ) r=h-1; int m=2*r+1;
float *T=(float*) alMalloc(m*2*sizeof(float),16);
for( int d0=0; d0<d; d0++ ) for( int x=0; x<w; x++ ) {
float *Oc=O+d0*h*w+h*x, *Ic=I+d0*h*w+h*x;
convMinY(Ic,Oc,T,h,r);
}
alFree(T);
}
// B=convConst(type,A,r,s); fast 2D convolutions (see convTri.m and convBox.m)
#ifdef MATLAB_MEX_FILE
void mexFunction( int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[] ) {
int *ns, ms[3], nDims, d, m, r, s; float *A, *B, p;
mxClassID id; char type[1024];
// error checking on arguments
if(nrhs!=4) mexErrMsgTxt("Four inputs required.");
if(nlhs > 1) mexErrMsgTxt("One output expected.");
nDims = mxGetNumberOfDimensions(prhs[1]);
id = mxGetClassID(prhs[1]);
ns = (int*) mxGetDimensions(prhs[1]);
d = (nDims == 3) ? ns[2] : 1;
m = (ns[0] < ns[1]) ? ns[0] : ns[1];
if( (nDims!=2 && nDims!=3) || id!=mxSINGLE_CLASS || m<4 )
mexErrMsgTxt("A must be a 4x4 or bigger 2D or 3D float array.");
// extract inputs
if(mxGetString(prhs[0],type,1024))
mexErrMsgTxt("Failed to get type.");
A = (float*) mxGetData(prhs[1]);
p = (float) mxGetScalar(prhs[2]);
r = (int) mxGetScalar(prhs[2]);
s = (int) mxGetScalar(prhs[3]);
if( s<1 ) mexErrMsgTxt("Invalid sampling value s");
if( r<0 ) mexErrMsgTxt("Invalid radius r");
// create output array (w/o initializing to 0)
ms[0]=ns[0]/s; ms[1]=ns[1]/s; ms[2]=d;
B = (float*) mxMalloc(ms[0]*ms[1]*d*sizeof(float));
plhs[0] = mxCreateNumericMatrix(0, 0, mxSINGLE_CLASS, mxREAL);
mxSetData(plhs[0], B); mxSetDimensions(plhs[0],(mwSize*)ms,nDims);
// perform appropriate type of convolution
if(!strcmp(type,"convBox")) {
if(r>=m/2) mexErrMsgTxt("mask larger than image (r too large)");
convBox( A, B, ns[0], ns[1], d, r, s );
} else if(!strcmp(type,"convTri")) {
if(r>=m/2) mexErrMsgTxt("mask larger than image (r too large)");
convTri( A, B, ns[0], ns[1], d, r, s );
} else if(!strcmp(type,"conv11")) {
if( s>2 ) mexErrMsgTxt("conv11 can sample by at most s=2");
conv11( A, B, ns[0], ns[1], d, r, s );
} else if(!strcmp(type,"convTri1")) {
if( s>2 ) mexErrMsgTxt("convTri1 can sample by at most s=2");
convTri1( A, B, ns[0], ns[1], d, p, s );
} else if(!strcmp(type,"convMax")) {
if( s>1 ) mexErrMsgTxt("convMax cannot sample");
convMax( A, B, ns[0], ns[1], d, r );
} else if(!strcmp(type,"convMin")) {
if( s>1 ) mexErrMsgTxt("convMin cannot sample");
convMin( A, B, ns[0], ns[1], d, r );
} else {
mexErrMsgTxt("Invalid type.");
}
}
#endif