You can deploy katib components and try a simple mnist demo on your laptop!
- VirtualBox
- Minikube
- kubectl
Start Katib on Minikube with deploy.sh. A Minikube cluster and Katib components will be deployed!
You can check them with kubectl -n kubeflow get pods
.
Don't worry if the vizier-core
get an error.
It will be recovered after DB will be prepared.
Wait until all components will be Running status.
Then, start port-forward for katib services 6789 -> manager
and 8000 -> UI
.
kubectl v1.10~
$ kubectl -n kubeflow port-forward svc/vizier-core 6789:6789 &
$ kubectl -n kubeflow port-forward svc/katib-ui 8000:80 &
kubectl ~v1.9
& kubectl -n kubeflow port-forward $(kubectl -n kubeflow get pod -o=name | grep vizier-core | sed -e "s@pods\/@@") 6789:6789 &
& kubectl -n kubeflow port-forward $(kubectl -n kubeflow get pod -o=name | grep katib-ui | sed -e "s@pods\/@@") 8000:80 &
$ kubectl apply -f random-example.yaml
Only this command, a study will start, generate hyper-parameters and save the results.
The configurations for the study(hyper-parameter feasible space, optimization parameter, optimization goal, suggestion algorithm, and so on) are defined in random-example.yaml
,
In this demo, hyper-parameters are embedded as args.
You can embed hyper-parameters in another way(e.g. environment values) by using template.
It is defined in WorkerSpec.GoTemplate.RawTemplate
.
It is written in go template format.
In this demo, 3 hyper parameters
- Learning Rate (--lr) - type: double
- Number of NN Layer (--num-layers) - type: int
- optimizer (--optimizer) - type: categorical are randomly generated.
$ kubectl -n kubeflow get studyjob
NAME AGE
random-example 2m
Check the study status.
$ kubectl -n kubeflow describe studyjobs random-example
Name: random-example
Namespace: kubeflow
Labels: controller-tools.k8s.io=1.0
Annotations: <none>
API Version: kubeflow.org/v1alpha1
Kind: StudyJob
Metadata:
Creation Timestamp: 2019-02-14T13:53:11Z
Finalizers:
clean-studyjob-data
Generation: 1
Resource Version: 5625476
Self Link: /apis/kubeflow.org/v1alpha1/namespaces/kubeflow/studyjobs/random-example
UID: de365269-305f-11e9-973d-0016ac101a86
Spec:
Metricsnames:
accuracy
Objectivevaluename: Validation-accuracy
Optimizationgoal: 0.99
Optimizationtype: maximize
Owner: crd
Parameterconfigs:
Feasible:
Max: 0.03
Min: 0.01
Name: --lr
Parametertype: double
Feasible:
Max: 5
Min: 2
Name: --num-layers
Parametertype: int
Feasible:
List:
sgd
adam
ftrl
Name: --optimizer
Parametertype: categorical
Requestcount: 1
Study Name: random-example
Suggestion Spec:
Request Number: 3
Suggestion Algorithm: random
Suggestion Parameters:
Name: SuggestionCount
Value: 0
Worker Spec:
Go Template:
Raw Template: apiVersion: batch/v1
kind: Job
metadata:
name: {{.WorkerID}}
namespace: kubeflow
spec:
template:
spec:
containers:
- name: {{.WorkerID}}
image: katib/mxnet-mnist-example
command:
- "python"
- "/mxnet/example/image-classification/train_mnist.py"
- "--batch-size=64"
{{- with .HyperParameters}}
{{- range .}}
- "{{.Name}}={{.Value}}"
{{- end}}
{{- end}}
restartPolicy: Never
Status:
Condition: Running
Last Reconcile Time: 2019-02-14T13:53:12Z
Start Time: 2019-02-14T13:53:11Z
Studyid: q267516663b357c2
Suggestion Count: 1
Suggestion Parameter Id: wa4e0d9f801a5a33
Trials:
Trialid: y9b54306d9d9b4d5
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T13:53:12Z
Workerid: ib2201d45c3df144
Trialid: dff87c7ef278a1e4
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T13:53:12Z
Workerid: cc0402c150661f3c
Trialid: n594a099a65d3a88
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T13:53:12Z
Workerid: e9eae6139a57892f
Events: <none>
When the Spec.Status.Condition becomes Completed
, the study is completed.
You can look the result on http://127.0.0.1:8000/katib
.
In Random example, the template for workers is defined in StudyJob manifest. A ConfigMap is also used for worker template. Let's use this template.
kubectl apply -f workerConfigMap.yaml
This template will be shared among the three demos below(Grid, Hyperband, and GPU).
Almost same as random suggestion.
In this demo, Katib will make 4 grids for learning rate (--lr) Min 0.03 and Max 0.07.
kubectl apply -f grid-example.yaml
In this demo, the eta is 3 and the R is 9.
kubectl apply -f hypb-example.yaml
You can check your study results with Web UI.
Acsess to http://127.0.0.1:8000/katib
The Results will be saved automatically.
You can set any configuration for your worker pods.
Here, try to set config for GPU.
The manifest of the worker pods are generated from a template.
The templates are defined in ConfigMap.
There are two templates: defaultWorkerTemplate.yaml and gpuWorkerTemplate.yaml.
You can add your template for worker.
Then you should specify the template in your studyjob spec.
This example uses gpuWorkerTemplate.yaml
.
You can apply it same as other examples.
$ kubectl apply -f gpu-example.yaml
$ kubectl -n kubeflow get studyjob
NAME AGE
gpu-example 1m
random-example 17m
$ kubectl -n kubeflow describe studyjob gpu-example
Name: gpu-example
Namespace: kubeflow
Labels: controller-tools.k8s.io=1.0
Annotations: <none>
API Version: kubeflow.org/v1alpha1
Kind: StudyJob
Metadata:
Creation Timestamp: 2019-02-14T14:00:15Z
Finalizers:
clean-studyjob-data
Generation: 1
Resource Version: 5626905
Self Link: /apis/kubeflow.org/v1alpha1/namespaces/kubeflow/studyjobs/gpu-example
UID: daba7165-3060-11e9-973d-0016ac101a86
Spec:
Metricsnames:
accuracy
Objectivevaluename: Validation-accuracy
Optimizationgoal: 0.99
Optimizationtype: maximize
Owner: crd
Parameterconfigs:
Feasible:
Max: 0.03
Min: 0.01
Name: --lr
Parametertype: double
Feasible:
Max: 3
Min: 2
Name: --num-layers
Parametertype: int
Feasible:
List:
sgd
adam
ftrl
Name: --optimizer
Parametertype: categorical
Study Name: gpu-example
Suggestion Spec:
Request Number: 3
Suggestion Algorithm: random
Suggestion Parameters:
Name: SuggestionCount
Value: 0
Worker Spec:
Go Template:
Template Path: gpuWorkerTemplate.yaml
Status:
Condition: Running
Last Reconcile Time: 2019-02-14T14:00:17Z
Start Time: 2019-02-14T14:00:15Z
Studyid: g3b79d9c0ff8881f
Suggestion Count: 1
Suggestion Parameter Id: z313763f77337c14
Trials:
Trialid: xc63f4f77156df83
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T14:00:16Z
Workerid: ue4468cbb6cb2045
Trialid: ee8011ddd3937998
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T14:00:16Z
Workerid: mcff6fcf01c8f2d4
Trialid: f54ba014544ef2ad
Workeridlist:
Completion Time: <nil>
Condition: Running
Kind: Job
Start Time: 2019-02-14T14:00:16Z
Workerid: r5c011c5c9eca2e9
Events: <none>
Check if the GPU configuration works correctly.
$ kubectl -n kubeflow describe pod r5c011c5c9eca2e9-ftmcj
Name: r5c011c5c9eca2e9-ftmcj
Namespace: kubeflow
Priority: 0
PriorityClassName: <none>
Node: <none>
Labels: controller-uid=db82ecf9-3060-11e9-973d-0016ac101a86
job-name=r5c011c5c9eca2e9
Annotations: kubernetes.io/psp=ibm-privileged-psp
Status: Pending
IP:
Controlled By: Job/r5c011c5c9eca2e9
Containers:
r5c011c5c9eca2e9:
Image: katib/mxnet-mnist-example:gpu
Port: <none>
Host Port: <none>
Command:
python
/mxnet/example/image-classification/train_mnist.py
--batch-size=64
--lr=0.0244
--num-layers=2
--optimizer=ftrl
Limits:
nvidia.com/gpu: 1
Requests:
nvidia.com/gpu: 1
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-vh4d7 (ro)
Conditions:
Type Status
PodScheduled False
Volumes:
default-token-vh4d7:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-vh4d7
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 3m (x25 over 4m) default-scheduler 0/3 nodes are available: 3 Insufficient nvidia.com/gpu.
The default metrics collector collects metrics from the StdOut of workers. It is deployed as a cronjob. It will collect and report metrics periodically. It collects metrics through k8s pod log API. You should print logs in {metrics name}={value} style. In the above demo, the objective value name is Validation-accuracy and the metrics are [accuracy], so your training code should print like below.
epoch 1:
batch1 accuracy=0.3
batch2 accuracy=0.5
Validation-accuracy=0.4
epoch 2:
batch1 accuracy=0.7
batch2 accuracy=0.8
Validation-accuracy=0.75
The metrics collector will collect all logs of metrics.
The manifest of metrics collector is also generated from template and defined here.
You can add your template and specify spec.metricsCollectorSpec.metricsCollectorTemplatePath
in a studyjob manifest.
The TF Event file metrics collector will collect metrics from tf.event files. It is also deployed as a cronjob. When you use TF Event File Metrics Collector, you need to share files between the metrics collector and the worker by PVC. There is an example for TF Event file metrics collector. First, please create PV and PVC to share event file.
$ kubectl apply -f tfevent-volume/
Then, create a studyjob that uses TF Event file metrics collector.
$ kubectl apply -f tf-event_test.yaml
It will create a tensorflow worker from whose eventfile metrics are collected.
The code of tensorflow is the official tutorial for mnist with summary.
It will save event file to /log/train
and /log/test
directory.
They have same named metrics ('accuracy' and 'cross_entropy').
The accuracy in training and test will be saved in train/ directory and test/ directory respectively.
In a studyjob, please add directry name to the name of metrics as a prefix e.g. train/accuracy
, test/accuracy
.
Clean up with ./destroy.sh
script.
It will stop port-forward process and delete minikube cluster.