forked from CMS-LUMI-POG/VdMFramework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
makeScanFileII.py
268 lines (195 loc) · 9.46 KB
/
makeScanFileII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import sys
import os
import tables
import pandas as pd
import numpy as np
import ROOT
def doMakeScanFile(ConfigInfo):
Date = str(ConfigInfo['Date'])
Fill = str(ConfigInfo['Fill'])
InputDIPFile = str(ConfigInfo['InputDIPFile'])
InputCentralPath = str(ConfigInfo['InputCentralPath'])
ScanNames= ConfigInfo['ScanNames']
ScanTimeWindows= ConfigInfo['ScanTimeWindows']
BetaStar = str(ConfigInfo['BetaStar'])
Angle = str(ConfigInfo['Angle'])
Offset = ConfigInfo['Offset']
ParticleTypeB1 = str(ConfigInfo['ParticleTypeB1'])
ParticleTypeB2 = str(ConfigInfo['ParticleTypeB2'])
EnergyB1 = str(ConfigInfo['EnergyB1'])
EnergyB2 = str(ConfigInfo['EnergyB2'])
print ""
print "Making scan file for scan during fill ", Fill
print "Scans fell into time periods: "
for entry in ScanTimeWindows:
print "From ", pd.to_datetime(entry[0], unit = 's'), " to ", pd.to_datetime(entry[1], unit = 's')
print ""
if len(ScanNames) != len(ScanTimeWindows):
print "Attention: number of scan names and number of scan time windows inconsistent. Exit program."
sys.exit(1)
if len(ScanNames) != len(Offset):
print "Attention: number of scan names and number of offset values inconsistent. Exit program."
sys.exit(1)
df = pd.read_csv(InputDIPFile)
# sanity checks
columnsList = ['fill', 'run', 'ls', 'nb', 'sec', 'msec', 'acqflag', 'step', 'beam', 'ip', 'scanstatus', 'plane', 'progress', 'nominal_separation', 'read_nominal_B1sepPlane', 'read_nominal_B1xingPlane', 'read_nominal_B2sepPlane', 'read_nominal_B2xingPlane', 'set_nominal_B1sepPlane', 'set_nominal_B1xingPlane', 'set_nominal_B2sepPlane', 'set_nominal_B2xingPlane']
extractedList = df.columns.values.tolist()
if not (columnsList == extractedList):
print "Attention: First line in dip csv file not as expected, check file integrity. Exit program."
sys.exit(1)
FillfromDip = df['fill'][0]
if (Fill != str(FillfromDip)):
print("Mismatch between fill info from dip and from config file. Exit program.")
sys.exit(1)
# check that there is only one fill number in file
fillfromDipmean = df['fill'].mean()
if not (float(FillfromDip) == fillfromDipmean):
print "Attention: Fill number in first row of dip csv file ", FillfromDip, " and mean of the fill number over all rows in the file ", fillfromDipmean, " are different. Check file integrity. Exit program."
sys.exit(1)
run = df['run'][0]
# check that there is only one run number in file
runfromDipmean = df['run'].mean()
if not (float(run) == runfromDipmean):
print "Attention: There appears to be more than one run number in the dip file. Is this intentional ?"
print "List of all runs in dip file: ", df['run'].drop_duplicates().tolist()
scan = [ [] for entry in ScanNames]
Run = [0 for entry in ScanNames]
for i, scanName in enumerate(ScanNames):
print "Now at scan", scanName
timeWindow = [ScanTimeWindows[i][0], ScanTimeWindows[i][1]]
# get scan point info from dip file
dfPreSelect = df[(df.sec >= timeWindow[0]) & (df.sec <= timeWindow[1]) & (df.ip == 32) & (df.acqflag == 1) & (df.scanstatus == 'ACQUIRING') & (df.step != 9999)]
# make sure that preselected df contains at most one X (=CROSSING) and one Y (=SEPARATION) scan
justonescan = False
if len(dfPreSelect[dfPreSelect.plane == "CROSSING"].index.tolist()) == 0:
justonescan = True
if len(dfPreSelect[dfPreSelect.plane == "SEPARATION"].index.tolist()) == 0:
justonescan = True
if not(justonescan):
minIndexX = dfPreSelect[dfPreSelect.plane == "CROSSING"].index.min()
maxIndexX = dfPreSelect[dfPreSelect.plane == "CROSSING"].index.max()
minIndexY = dfPreSelect[dfPreSelect.plane == "SEPARATION"].index.min()
maxIndexY = dfPreSelect[dfPreSelect.plane == "SEPARATION"].index.max()
if (minIndexX < minIndexY and maxIndexX > maxIndexY) or (minIndexX > minIndexY and maxIndexX < maxIndexY):
print "Attention: Time search window given in config file contains more than one X and one Y scan, do not know how to handle this. Exit program"
sys.exit(1)
nomSep = []
dfSP = pd.DataFrame()
if ("X" in scanName):
dfSP = dfPreSelect[dfPreSelect.plane == "CROSSING"]
if ("Y" in scanName):
dfSP = dfPreSelect[dfPreSelect.plane == "SEPARATION"]
# cut off zero separation points at very beginning and very end of scan
firstnonzeroIdx = dfSP.index[dfSP['nominal_separation'].nonzero()[0]][0]
lastnonzeroIdx = dfSP.index[dfSP['nominal_separation'].nonzero()[0]][-1]
nomSep = dfSP['nominal_separation'][range(firstnonzeroIdx, lastnonzeroIdx+1)].dropna().drop_duplicates().tolist()
run = dfSP['run'].drop_duplicates().tolist()[0]
if len(nomSep) == 0:
print "Attention: Cannot get nominal separations. Exit program."
sys.exit(1)
# determine time window that goes with each separation
for idx, entry in enumerate(nomSep):
DFsingleSP = dfSP[dfSP.nominal_separation == entry]['sec'][range(firstnonzeroIdx, lastnonzeroIdx+1)]
tstart = DFsingleSP.min()
tstop = DFsingleSP.max()
relDis = round(entry, 6)
SP = [idx+1, tstart, tstop, relDis]
scan[i].append(SP)
Run[i] = run
#
# get bunches info from "central" hdf5 file
#
tw = '(timestampsec >' + str(ScanTimeWindows[0][0]) + ') & (timestampsec <=' + str(ScanTimeWindows[0][1]) + ')'
filelist = os.listdir(InputCentralPath)
notfound = True
for file in filelist:
if notfound:
h5file = tables.open_file(InputCentralPath+"/" + file, 'r')
beamtable = h5file.root.beam
bunchlist1 = [r['bxconfig1'] for r in beamtable.where(tw)]
bunchlist2 = [r['bxconfig2'] for r in beamtable.where(tw)]
if bunchlist1 and bunchlist2:
notfound = False
# attention: LHC bcid's start at 1, not at 0
filledArr1 = np.nonzero(bunchlist1[0])
filledArr1 = filledArr1 + np.ones_like(filledArr1)
filledBunches1 = filledArr1[0].tolist()
filledArr2 = np.nonzero(bunchlist2[0])
filledArr2 = filledArr2 + np.ones_like(filledArr2)
filledBunches2 = filledArr2[0].tolist()
collArr = np.nonzero(bunchlist1[0]*bunchlist2[0])
collArr = collArr + np.ones_like(collArr)
collBunches = collArr[0].tolist()
h5file.close()
table = {}
table["Fill"] = Fill
table["Date"] = Date
table["Run"] = Run
table["InputDIPFile"] = InputDIPFile
table["ScanNames"] = ScanNames
table["ScanTimeWindows"] = ScanTimeWindows
table["BetaStar"] = BetaStar
table["Angle"] = Angle
table["Offset"] = Offset
table["ParticleTypeB1"] = ParticleTypeB1
table["ParticleTypeB2"] = ParticleTypeB2
table["EnergyB1"] = EnergyB1
table["EnergyB2"] = EnergyB2
table["FilledBunchesB1"] = filledBunches1
table["FilledBunchesB2"] = filledBunches2
table["CollidingBunches"] = collBunches
csvtable = []
csvtable.append(["Fill", Fill])
csvtable.append(["Date", Date])
csvtable.append(["Run", Run])
csvtable.append(["InputDIPFile", InputDIPFile])
csvtable.append(["ScanNames", ScanNames])
csvtable.append(["ScanTimeWindows",ScanTimeWindows ])
csvtable.append(["BetaStar",BetaStar ])
csvtable.append(["Angle",Angle ])
csvtable.append(["Offset",Offset ])
csvtable.append(["ParticleTypeB1",ParticleTypeB1 ])
csvtable.append(["ParticleTypeB2", ParticleTypeB2])
csvtable.append(["EnergyB1",EnergyB1 ])
csvtable.append(["EnergyB2", EnergyB2])
csvtable.append(["FilledBunchesB1", filledBunches1])
csvtable.append(["FilledBunchesB2", filledBunches2])
csvtable.append(["CollidingBunches", collBunches ])
csvtable.append(["scan number", "scan type", "scan points: number, tStart, tStop, relative displacement"])
for i, scanName in enumerate(ScanNames):
table["Scan_" + str(i+1)]=[]
csvtable.append(["Scan_" + str(i+1)] )
for j in range(len(scan[i])):
row = [i+1, scanName]
row.append(j+1)
row.append(scan[i][j][1])
row.append(scan[i][j][2])
row.append(scan[i][j][3])
csvtable.append(row)
table["Scan_" + str(i+1)].append(row)
return table, csvtable
if __name__ == '__main__':
import pickle, csv, sys, json
ConfigFile = sys.argv[1]
Config=open(ConfigFile)
ConfigInfo = json.load(Config)
Config.close()
Fill = str(ConfigInfo['Fill'])
AnalysisDir = str(ConfigInfo['AnalysisDir'])
OutputSubDir = str(ConfigInfo['OutputSubDir'])
outpath = './' + AnalysisDir + '/'+ OutputSubDir
import os
dirlist = ['./'+AnalysisDir, outpath]
for entry in dirlist:
if not os.path.isdir(entry):
print "Make directory ", entry
os.mkdir(entry, 0755 )
table = {}
csvtable = []
table, csvtable = doMakeScanFile(ConfigInfo)
csvfile = open(outpath+'/Scan_'+str(Fill)+'.csv', 'wb')
writer = csv.writer(csvfile)
writer.writerows(csvtable)
csvfile.close()
with open(outpath+'/Scan_'+str(Fill)+'.pkl', 'wb') as f:
pickle.dump(table, f)