-
Notifications
You must be signed in to change notification settings - Fork 6
/
references.bib
695 lines (634 loc) · 24.3 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
@misc{pmi-profiles-bmms-2023,
title={On the Properties and Estimation of Pointwise Mutual Information Profiles},
author={Paweł Czyż and Frederic Grabowski and Julia E. Vogt and Niko Beerenwinkel and Alexander Marx},
year={2023},
eprint={2310.10240},
archivePrefix={arXiv},
primaryClass={stat.ML},
url={https://arxiv.org/abs/2310.10240}
}
@inproceedings{beyond-normal-2023,
title={Beyond Normal: On the Evaluation of Mutual Information Estimators},
author={Paweł Czyż and Frederic Grabowski and Julia E. Vogt and Niko Beerenwinkel and Alexander Marx},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023}
}
% ----- Mutual information estimators ------
@article{kraskov:04:ksg,
author = {Kraskov, Alexander and St{\"o}gbauer, Harald and Grassberger, Peter},
journal = {Physical Review E},
number = {6},
pages = {066138},
publisher = {APS},
title = {Estimating mutual information},
volume = {69},
year = {2004}
}
% Histogram-based estimator
@article{Cellucci-HistogramsMI,
title={Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms},
author={Cellucci, Christopher J and Albano, Alfonso M and Rapp, Paul E},
journal={Physical review E},
volume={71},
number={6},
pages={066208},
year={2005},
publisher={APS}
}
% Another histogram-based estimator
@article{Darbellay-HistogramsMI,
author = {Darbellay, Georges A and Vajda, Igor},
journal = {IEEE Transactions on Information Theory},
number = {4},
pages = {1315--1321},
publisher = {IEEE},
title = {Estimation of the information by an adaptive partitioning of the observation space},
volume = {45},
year = {1999}}
% Discrete-continuous mixtures
@inproceedings{Gao-2017-DiscreteContinuous,
author = {Gao, Weihao and Kannan, Sreeram and Oh, Sewoong and Viswanath, Pramod},
booktitle = {Advances in Neural Information Processing Systems},
editor = {I. Guyon and U. Von Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Estimating Mutual Information for Discrete-Continuous Mixtures},
url = {https://proceedings.neurips.cc/paper_files/paper/2017/file/ef72d53990bc4805684c9b61fa64a102-Paper.pdf},
volume = {30},
year = {2017}
}
@book{politis:91:entropy-mixture,
title={On the entropy of a mixture distribution},
author={Politis, Dimitris N},
year={1991},
publisher={Purdue University. Department of Statistics}
}
@InProceedings{marx:21:myl,
author = {Alexander Marx and Lincen Yang and Matthijs van Leeuwen},
title = {Estimating Conditional Mutual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive Histograms},
booktitle = {Proceedings of the SIAM International Conference on Data Mining (SDM)},
pages = {387-395},
year={2021}
}
@article{Song-Ermon-2019,
author = {Jiaming Song and
Stefano Ermon},
title = {Understanding the Limitations of Variational Mutual Information Estimators},
journal = {CoRR},
volume = {abs/1910.06222},
year = {2019},
url = {http://arxiv.org/abs/1910.06222},
eprinttype = {arXiv},
eprint = {1910.06222},
timestamp = {Wed, 16 Oct 2019 16:25:53 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-06222.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
% ----- Very nice applications of mutual information -----
@article{Nalecz-Jawecki-2023,
doi = {10.1371/journal.pcbi.1011155},
author = {Na{\l}{\c e}cz-Jawecki, Pawe{\l} AND Gagliardi, Paolo Armando AND Kochańczyk, Marek AND Dessauges, Coralie AND Pertz, Olivier AND Lipniacki, Tomasz},
journal = {PLOS Computational Biology},
publisher = {Public Library of Science},
title = {The {MAPK}/{ERK} channel capacity exceeds 6 bit/hour},
year = {2023},
month = {05},
volume = {19},
url = {https://doi.org/10.1371/journal.pcbi.1011155},
pages = {1-21},
number = {5}
}
% KSG + Monte Carlo Tree Search + ATLAS SUSY experiment
@misc{Carrara2023-KSG-MCTS,
title={Using {Monte Carlo} Tree Search to Calculate Mutual Information in High Dimensions},
author={Nick Carrara and Jesse Ernst},
year={2023},
eprint={2309.08516},
archivePrefix={arXiv},
primaryClass={physics.data-an}
}
@article{Grabowski-2019-systems-biology,
author = {Grabowski, Frederic and Czyż, Paweł and Kochańczyk, Marek and Lipniacki, Tomasz },
title = {Limits to the rate of information transmission through the {MAPK} pathway},
journal = {Journal of The Royal Society Interface},
volume = {16},
number = {152},
pages = {20180792},
year = {2019},
doi = {10.1098/rsif.2018.0792},
URL = {https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2018.0792},
eprint = {https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2018.0792}
}
% CCA as an estimator
@INPROCEEDINGS{kay-elliptic,
author={Kay, J.},
booktitle={IJCNN International Joint Conference on Neural Networks},
title={Feature discovery under contextual supervision using mutual information},
year={1992},
volume={4},
pages={79--84},
doi={10.1109/IJCNN.1992.227286}
}
% MINE estimator
@inproceedings{belghazi:18:mine,
title={Mutual information neural estimation},
author={Belghazi, Mohamed Ishmael and Baratin, Aristide and Rajeshwar, Sai and Ozair, Sherjil and Bengio, Yoshua and Courville, Aaron and Hjelm, Devon},
booktitle={International conference on machine learning},
pages={531--540},
year={2018},
organization={PMLR}
}
% NWJ estimator
@inproceedings{NWJ2007,
author = {Nguyen, XuanLong and Wainwright, Martin J and Jordan, Michael},
booktitle = {Advances in Neural Information Processing Systems},
editor = {J. Platt and D. Koller and Y. Singer and S. Roweis},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization},
url = {https://proceedings.neurips.cc/paper_files/paper/2007/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf},
volume = {20},
year = {2007}
}
% InfoNCE estimator
@article{oord:18:infonce,
title={Representation learning with contrastive predictive coding},
author={Oord, Aaron van den and Li, Yazhe and Vinyals, Oriol},
journal={arXiv preprint arXiv:1807.03748},
year={2018}
}
% Model-based mutual information estimation for discrete data
@inproceedings{Hutter-2001,
author = {Hutter, Marcus},
booktitle = {Advances in Neural Information Processing Systems},
editor = {T. Dietterich and S. Becker and Z. Ghahramani},
pages = {},
publisher = {MIT Press},
title = {Distribution of Mutual Information},
url = {https://proceedings.neurips.cc/paper_files/paper/2001/file/fb2e203234df6dee15934e448ee88971-Paper.pdf},
volume = {14},
year = {2001}
}
% Model-based MI estimation (discrete case and CCA)
@article{Brillinger-2004,
ISSN = {01030752, 23176199},
URL = {http://www.jstor.org/stable/43601047},
author = {David R. Brillinger},
journal = {Brazilian Journal of Probability and Statistics},
number = {2},
pages = {163--182},
publisher = {[Brazilian Statistical Association, Institute of Mathematical Statistics]},
title = {Some data analyses using mutual information},
urldate = {2023-09-24},
volume = {18},
year = {2004}
}
% ----- Mixtures and their entropy ------
@Article{Kolchinsky-2017-mixtures-entropy,
AUTHOR = {Kolchinsky, Artemy and Tracey, Brendan D.},
TITLE = {Estimating Mixture Entropy with Pairwise Distances},
JOURNAL = {Entropy},
VOLUME = {19},
YEAR = {2017},
NUMBER = {7},
ARTICLE-NUMBER = {361},
URL = {https://www.mdpi.com/1099-4300/19/7/361},
ISSN = {1099-4300},
DOI = {10.3390/e19070361}
}
@article{Haussler-1997-mixtures-entropy,
author = {David Haussler and Manfred Opper},
title = {{Mutual information, metric entropy and cumulative relative entropy risk}},
volume = {25},
journal = {The Annals of Statistics},
number = {6},
publisher = {Institute of Mathematical Statistics},
pages = {2451 -- 2492},
keywords = {Bayes risk, Density estimation, Hellinger distance, Kullback-Leibler distance, Metric entropy, minimax risk, mutual information, Relative entropy},
year = {1997},
doi = {10.1214/aos/1030741081},
URL = {https://doi.org/10.1214/aos/1030741081}
}
% ----- Bayesian statistics and model misspecification -----
@article{Watson-Holmes-2014,
author = {James Watson and Chris Holmes},
title = {{Approximate Models and Robust Decisions}},
volume = {31},
journal = {Statistical Science},
number = {4},
publisher = {Institute of Mathematical Statistics},
pages = {465 -- 489},
keywords = {Bayesian nonparametrics, Computational decision theory, D-open problem, Kullback–Leibler divergence, model misspecification, robustness},
year = {2016},
doi = {10.1214/16-STS592},
URL = {https://doi.org/10.1214/16-STS592}
}
@misc{Gelman2020-BayesianWorkflow,
title={{B}ayesian Workflow},
author={Andrew Gelman and Aki Vehtari and Daniel Simpson and Charles C. Margossian and Bob Carpenter and Yuling Yao and Lauren Kennedy and Jonah Gabry and Paul-Christian Bürkner and Martin Modrák},
year={2020},
eprint={2011.01808},
archivePrefix={arXiv},
primaryClass={stat.ME}
}
@book{Gelman-2013-BayesianDataAnalysis,
title={{B}ayesian Data Analysis, Third Edition},
author={Gelman, A. and Carlin, J.B. and Stern, H.S. and Dunson, D.B. and Vehtari, A. and Rubin, D.B.},
isbn={9781439840955},
lccn={2013039507},
series={Chapman \& Hall/CRC Texts in Statistical Science},
url={https://books.google.pl/books?id=ZXL6AQAAQBAJ},
year={2013},
publisher={Taylor \& Francis}
}
@book{Brooks-Handbook_of_Markov_Chain_Monte_Carlo,
title={Handbook of {M}arkov Chain {M}onte {C}arlo},
author={Brooks, S. and Gelman, A. and Jones, G. and Meng, X.L.},
isbn={9781420079425},
series={Chapman \& Hall/CRC Handbooks of Modern Statistical Methods},
url={https://books.google.ch/books?id=qfRsAIKZ4rIC},
year={2011},
publisher={CRC Press}
}
@article{Sankaran-Holmes-GenerativeModels,
author = {Sankaran, Kris and Holmes, Susan P.},
title = {Generative Models: An Interdisciplinary Perspective},
journal = {Annual Review of Statistics and Its Application},
volume = {10},
number = {1},
pages = {325-352},
year = {2023},
doi = {10.1146/annurev-statistics-033121-110134},
URL = {https://doi.org/10.1146/annurev-statistics-033121-110134},
eprint = {https://doi.org/10.1146/annurev-statistics-033121-110134}
}
@article{Hoffman-2014-NUTS-sampler,
author = {Matthew D. Hoffman and Andrew Gelman},
title = {The {No-U-Turn Sampler}: Adaptively Setting Path Lengths in {Hamiltonian Monte Carlo}},
journal = {Journal of Machine Learning Research},
year = {2014},
volume = {15},
number = {47},
pages = {1593--1623},
url = {http://jmlr.org/papers/v15/hoffman14a.html}
}
@article{Yao-hierarchical-stacking,
author = {Yuling Yao and Gregor Pirš and Aki Vehtari and Andrew Gelman},
title = {{Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful}},
volume = {17},
journal = {Bayesian Analysis},
number = {4},
publisher = {International Society for Bayesian Analysis},
pages = {1043 -- 1071},
keywords = {Bayesian hierarchical modeling, conditional prediction, covariate shift, model averaging, prior construction, stacking},
year = {2022},
doi = {10.1214/21-BA1287},
URL = {https://doi.org/10.1214/21-BA1287}
}
% The LKJ prior on correlation matrices
@article{LKJ-prior-2009,
title = {Generating random correlation matrices based on vines and extended onion method},
journal = {Journal of Multivariate Analysis},
volume = {100},
number = {9},
pages = {1989-2001},
year = {2009},
issn = {0047-259X},
doi = {https://doi.org/10.1016/j.jmva.2009.04.008},
url = {https://www.sciencedirect.com/science/article/pii/S0047259X09000876},
author = {Daniel Lewandowski and Dorota Kurowicka and Harry Joe},
keywords = {Dependence vines, Correlation matrix, Partial correlation, Onion method},
}
% The CSP prior used to model covariance matrix
@article{Legramanti-CSP_prior,
author = {Legramanti, Sirio and Durante, Daniele and Dunson, David B},
title = "{Bayesian cumulative shrinkage for infinite factorizations}",
journal = {Biometrika},
volume = {107},
number = {3},
pages = {745-752},
year = {2020},
month = {05},
issn = {0006-3444},
doi = {10.1093/biomet/asaa008},
url = {https://doi.org/10.1093/biomet/asaa008},
eprint = {https://academic.oup.com/biomet/article-pdf/107/3/745/33658376/asaa008.pdf},
}
% Sequential Monte Carlo samplers
@article{DelMoral-2006-SMC-samplers,
author = {Del Moral, Pierre and Doucet, Arnaud and Jasra, Ajay},
title = {Sequential {Monte Carlo} samplers},
journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
volume = {68},
number = {3},
pages = {411-436},
keywords = {Importance sampling, Markov chain Monte Carlo methods, Ratio of normalizing constants, Resampling, Sequential Monte Carlo methods, Simulated annealing},
doi = {https://doi.org/10.1111/j.1467-9868.2006.00553.x},
url = {https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2006.00553.x},
eprint = {https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2006.00553.x},
year = {2006}
}
% Piironen-cross_validation
@Article{Piironen2017-cross-validation,
author={Piironen, Juho
and Vehtari, Aki},
title={Comparison of {B}ayesian predictive methods for model selection},
journal={Statistics and Computing},
year={2017},
month={May},
day={01},
volume={27},
number={3},
pages={711-735},
issn={1573-1375},
doi={10.1007/s11222-016-9649-y},
url={https://doi.org/10.1007/s11222-016-9649-y}
}
% Bayesian neural network posteriors
@InProceedings{Izmailov-BNN_posteriors,
title = {What Are {B}ayesian Neural Network Posteriors Really Like?},
author = {Izmailov, Pavel and Vikram, Sharad and Hoffman, Matthew D and Wilson, Andrew Gordon Gordon},
booktitle = {Proceedings of the 38th International Conference on Machine Learning},
pages = {4629--4640},
year = {2021},
editor = {Meila, Marina and Zhang, Tong},
volume = {139},
series = {Proceedings of Machine Learning Research},
month = {18--24 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v139/izmailov21a/izmailov21a.pdf},
url = {https://proceedings.mlr.press/v139/izmailov21a.html}
}
% Sparse finite mixture models
@article{Fruehwirth-From_here_to_infinity,
author={Fr{\"u}hwirth-Schnatter, Sylvia
and Malsiner-Walli, Gertraud},
title={From here to infinity: sparse finite versus {D}irichlet process mixtures in model-based clustering},
journal={Advances in Data Analysis and Classification},
year={2019},
month={Mar},
day={01},
volume={13},
number={1},
pages={33-64},
issn={1862-5355},
doi={10.1007/s11634-018-0329-y},
url={https://doi.org/10.1007/s11634-018-0329-y}
}
@article{Flegal-Monte_Carlo-Standard_Error,
author = {James M. Flegal and Murali Haran and Galin L. Jones},
title = {{Markov Chain Monte Carlo}: {C}an We Trust the Third Significant Figure?},
volume = {23},
journal = {Statistical Science},
number = {2},
publisher = {Institute of Mathematical Statistics},
pages = {250 -- 260},
keywords = {Convergence diagnostic, Markov chain, Monte Carlo, standard errors},
year = {2008},
doi = {10.1214/08-STS257},
URL = {https://doi.org/10.1214/08-STS257}
}
@article{Koehler-Monte_Carlo_error,
author = {Koehler, E. and Brown, E. and Haneuse, S.J.-P.A.},
title = {On the Assessment of {Monte Carlo} Error in Simulation-Based Statistical Analyses},
journal = {The American Statistician},
volume = {63},
number = {2},
pages = {155-162},
year = {2009},
publisher = {Taylor & Francis},
doi = {10.1198/tast.2009.0030}
}
% ----- General information theory and probability theory -----
% Derivation of mutual information for multivariate Student distribution
@article{skew-elliptical,
author = "Arellano-{V}alle, R.B. and Contreras-Reyes, J.E. and Genton, M.G.",
title = "Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions",
journal = "Scandinavian Journal of Statistics",
year = 2013,
volume = "49",
pages = "42--62"
}
% Pinsker's book defining mutual information in general. Especially important is Chapter 2.
@book{pinsker1964information,
title={Information and Information Stability of Random Variables and Processes},
author={Pinsker, M.S. and Feinstein, A.},
isbn={9780816268047},
lccn={64014623},
series={Holden-Day series in time series analysis},
year={1964},
publisher={Holden-Day}
}
% Wonderful book, we use it to prove the inequality of mutual information in mixture distributions
@book{Polyanskiy-Wu-Information-Theory,
author={Polyanskiy, Y. and Wu, Y.},
title={Information Theory: From Coding to Learning},
year={2022},
publisher={Cambridge University Press},
note={Book draft}
}
% Upper bound on variance known as Popoviciu's inequality
@article{Popoviciu-BoundedVariance,
author = {Popoviciu, Tiberiu},
title = {Sur les équations algébriques ayant toutes leurs racines réelles},
journal = {Mathematica (Cluj)},
year = {1935},
volume={9},
pages={129--145}
}
@book{cover:06:elements,
author = {Cover, Thomas M. and Thomas, Joy A.},
title = {Elements of Information Theory},
publisher = {Wiley-Interscience New York},
year = {2006},
}
@book{Murphy-ProbabilisticMachineLearning-AdvancedTopics,
author = "Kevin P. Murphy",
title = "Probabilistic Machine Learning: Advanced Topics",
publisher = "MIT Press",
year = 2023,
url = "http://probml.github.io/book2"
}
% ------ Software ------
% Snakemake
@Article{Moelder-2021-snakemake,
AUTHOR = { Mölder, F and Jablonski, KP and Letcher, B and Hall, MB and Tomkins-Tinch, CH and Sochat, V and Forster, J and Lee, S and Twardziok, SO and Kanitz, A and Wilm, A and Holtgrewe, M and Rahmann, S and Nahnsen, S and Köster, J},
TITLE = {Sustainable data analysis with {S}nakemake},
JOURNAL = {F1000Research},
VOLUME = {10},
YEAR = {2021},
NUMBER = {33},
DOI = {10.12688/f1000research.29032.1}
}
% TensorFlow Probability
@article{Dillon-TensorFlowProbability,
author = {Joshua V. Dillon and
Ian Langmore and
Dustin Tran and
Eugene Brevdo and
Srinivas Vasudevan and
Dave Moore and
Brian Patton and
Alex Alemi and
Matthew D. Hoffman and
Rif A. Saurous},
title = {TensorFlow Distributions},
journal = {CoRR},
volume = {abs/1711.10604},
year = {2017},
url = {http://arxiv.org/abs/1711.10604},
eprinttype = {arXiv},
eprint = {1711.10604},
timestamp = {Mon, 13 Aug 2018 16:48:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1711-10604.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
% JAX
@misc{JAX,
author = {James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las and Skye Wanderman-{M}ilne and Qiao Zhang},
title = {{JAX}: composable transformations of {P}ython+{N}um{P}y programs},
url = {http://github.com/google/jax},
version = {0.3.13},
year = {2018},
}
% NumPyro
@article{Phan-2019-NumPyro,
title={Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro},
author={Phan, Du and Pradhan, Neeraj and Jankowiak, Martin},
journal={arXiv preprint arXiv:1912.11554},
year={2019}
}
% Pyro
@article{Bingham-2019-Pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}
@article{geomstats,
author = {Nina Miolane and Nicolas Guigui and Alice Le Brigant and Johan Mathe and Benjamin Hou and Yann Thanwerdas and Stefan Heyder and Olivier Peltre and Niklas Koep and Hadi Zaatiti and Hatem Hajri and Yann Cabanes and Thomas Gerald and Paul Chauchat and Christian Shewmake and Daniel Brooks and Bernhard Kainz and Claire Donnat and Susan Holmes and Xavier Pennec},
title = {Geomstats: A {P}ython Package for {R}iemannian Geometry in Machine Learning},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {223},
pages = {1-9},
url = {http://jmlr.org/papers/v21/19-027.html}
}
% SciKit-Learn API design
@article{SciKit-Learn-API-2013,
author = "Buitinck, Lars and others",
title = "{API design for machine learning software: experiences from the scikit-learn project}",
eprint = "1309.0238",
journal = "arXiv",
primaryClass = "cs.LG",
month = "9",
year = "2013"
}
% ----- Other works -----
% Normalizing flows: an overview
@article{Papamakarios-Normalizing_flows,
author = {George Papamakarios and Eric Nalisnick and Danilo Jimenez Rezende and Shakir Mohamed and Balaji Lakshminarayanan},
title = {Normalizing Flows for Probabilistic Modeling and Inference},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {57},
pages = {1--64},
url = {http://jmlr.org/papers/v22/19-1028.html}
}
@article{Kobyzev-Normalizing_flows,
author = {I. Kobyzev and S. D. Prince and M. A. Brubaker},
journal = {IEEE Transactions on Pattern Analysis \& Machine Intelligence},
title = {Normalizing Flows: An Introduction and Review of Current Methods},
year = {2021},
volume = {43},
number = {11},
issn = {1939-3539},
pages = {3964-3979},
keywords = {estimation;jacobian matrices;mathematical model;training;computational modeling;context modeling;random variables},
doi = {10.1109/TPAMI.2020.2992934},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
month = {nov}
}
% Very nice overview of CCA as a whitening transformation, we use this result in Appendix
@Article{Jendoubi2019-CCA,
author={Jendoubi, Takoua
and Strimmer, Korbinian},
title={A whitening approach to probabilistic canonical correlation analysis for omics data integration},
journal={BMC Bioinformatics},
year={2019},
month={Jan},
day={09},
volume={20},
number={1},
pages={15},
issn={1471-2105},
doi={10.1186/s12859-018-2572-9},
url={https://doi.org/10.1186/s12859-018-2572-9}
}
% General matrix identities
@MISC{Petersen-MatrixCookbook,
author = "K. B. Petersen and M. S. Pedersen",
title = "The Matrix Cookbook",
year = "2012",
month = "November",
keywords = "Matrix identity, matrix relations, inverse, matrix derivative",
publisher = "Technical University of Denmark",
note = "Version 20121115",
url = "http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html",
abstract = "Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices."
}
% We use this result to characterize PMI profile of the normal distribution
@article{Imhof-Generalized-chi-squared,
ISSN = {00063444},
URL = {http://www.jstor.org/stable/2332763},
author = {J. P. Imhof},
journal = {Biometrika},
number = {3/4},
pages = {419--426},
publisher = {[Oxford University Press, Biometrika Trust]},
title = {Computing the Distribution of Quadratic Forms in Normal Variables},
urldate = {2023-08-28},
volume = {48},
year = {1961}
}
% Carl's paper which discusses PMI histogram between words
@InProceedings{allen-2019,
title = {Analogies Explained: Towards Understanding Word Embeddings},
author = {Allen, Carl and Hospedales, Timothy},
booktitle = {Proceedings of the 36th International Conference on Machine Learning},
pages = {223--231},
year = {2019},
editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan},
volume = {97},
series = {Proceedings of Machine Learning Research},
month = {09--15 Jun},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v97/allen19a/allen19a.pdf},
url = {https://proceedings.mlr.press/v97/allen19a.html}
}
% Smooth manifolds
@book{Lee-2003-SmoothManifolds,
title={Introduction to Smooth Manifolds},
author={Lee, J.M.},
isbn={9781441999825},
series={Graduate Texts in Mathematics},
year={2012},
edition={2nd},
url={https://doi.org/10.1007/978-1-4419-9982-5},
publisher={Springer}
}