-
Notifications
You must be signed in to change notification settings - Fork 1
/
D_nucleus_noise.py
132 lines (101 loc) · 4.56 KB
/
D_nucleus_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 3 19:08:12 2024
@author: celinesoeiro
"""
import numpy as np
from tcm_params import TCM_model_parameters, coupling_matrix_normal, coupling_matrix_PD
from model_functions import izhikevich_dudt, izhikevich_dvdt, tm_synapse_eq
neuron_quantities = TCM_model_parameters()['neuron_quantities']
neuron_per_structure = TCM_model_parameters()['neuron_per_structure']
neuron_params = TCM_model_parameters()['neuron_paramaters']
currents = TCM_model_parameters()['currents_per_structure']
dt = TCM_model_parameters()['dt']
syn_params = TCM_model_parameters()['synapse_params_excitatory']
n_D = neuron_quantities['D']
vr = TCM_model_parameters()['vr']
vp = TCM_model_parameters()['vp']
a_D = neuron_params['a_D']
b_D = neuron_params['b_D']
c_D = neuron_params['c_D']
d_D = neuron_params['d_D']
td_wl = TCM_model_parameters()['time_delay_within_layers']
td_bl = TCM_model_parameters()['time_delay_between_layers']
td_ct = TCM_model_parameters()['time_delay_cortex_thalamus']
td_tc = TCM_model_parameters()['time_delay_thalamus_cortex']
td_syn = TCM_model_parameters()['time_delay_synapse']
p = TCM_model_parameters()['synapse_total_params']
W_N = coupling_matrix_normal()['weights']
W_D_self = W_N['W_EE_d']
W_D_S = W_N['W_EE_d_s']
W_D_M = W_N['W_EE_d_m']
W_D_CI = W_N['W_EI_d_ci']
W_D_TR = W_N['W_EI_d_tr']
W_D_TC = W_N['W_EE_d_tc']
# W_PD = coupling_matrix_PD()['weights']
# W_D_self = W_PD['W_EE_d']
# W_D_S = W_PD['W_EE_d_s']
# W_D_M = W_PD['W_EE_d_m']
# W_D_CI = W_PD['W_EI_d_ci']
# W_D_TR = W_PD['W_EI_d_tr']
# W_D_TC = W_PD['W_EE_d_tc']
t_f_E = syn_params['t_f']
t_d_E = syn_params['t_d']
t_s_E = syn_params['t_s']
U_E = syn_params['U']
A_E = syn_params['distribution']
A_E_D_T = syn_params['distribution_D_T']
I_D = currents['D']
noise = TCM_model_parameters()['noise']
kisi_D = noise['kisi_D']
zeta_D = noise['zeta_D']
I_ps = TCM_model_parameters()['poisson_bg_activity']
I_ps_D = I_ps['D']
def D_nucleus(t, v_D, u_D, AP_D, PSC_D, PSC_S, PSC_M, PSC_T_D, PSC_CI, PSC_TR, PSC_D_T, u_D_syn, R_D_syn, I_D_syn):
I_syn = np.zeros((1, n_D))
I_syn_t = np.zeros((1, n_D))
for d in range(n_D):
v_D_aux = 1*v_D[d][t - 1]
u_D_aux = 1*u_D[d][t - 1]
AP_D_aux = 0
if (v_D_aux >= vp + zeta_D[d][t - 1]):
AP_D_aux = 1
AP_D[d][t] = t - 1
v_D_aux = v_D[d][t]
v_D[d][t] = c_D[0][d]
u_D[d][t] = u_D_aux + d_D[0][d]
else:
AP_D[d][t] = 0
AP_D_aux = 0
# Self feedback - Inhibitory
coupling_D_D = W_D_self[d][0]*1*PSC_D[0][t - td_wl - td_syn - 1]
# Coupling D to S - Excitatory
coupling_D_S = W_D_S[d][0]*1*PSC_S[0][t - td_bl - td_syn - 1]
# Coupling D to M - Excitatory
coupling_D_M = W_D_M[d][0]*1*PSC_M[0][t - td_bl - td_syn - 1]
# Coupling D to CI - Inhibitory
coupling_D_CI = W_D_CI[d][0]*1*PSC_CI[0][t - td_wl - td_syn - 1]
# Coupling D to TC - Excitatory
coupling_D_TC = W_D_TC[d][0]*1*PSC_T_D[0][t - td_tc - td_syn - 1]
# Coupling D to TR - Excitatory
coupling_D_TR = W_D_TR[d][0]*1*PSC_TR[0][t - td_tc - td_syn - 1]
dv_D = izhikevich_dvdt(v = v_D_aux, u = u_D_aux, I = I_D[d])
du_D = izhikevich_dudt(v = v_D_aux, u = u_D_aux, a = a_D[0][d], b = b_D[0][d])
coupling_cortex = (coupling_D_S + coupling_D_M + coupling_D_D + coupling_D_CI)/n_D
coupling_thalamus = (coupling_D_TC + coupling_D_TR)/n_D
bg_activity = kisi_D[d][t - 1] + I_ps_D[0][t - td_wl - td_syn - 1] - I_ps_D[1][t - td_wl - td_syn - 1]
v_D[d][t] = v_D_aux + dt*(dv_D + coupling_cortex + coupling_thalamus + bg_activity)
u_D[d][t] = u_D_aux + dt*du_D
# Synapse - Within cortex
syn_D = tm_synapse_eq(u = u_D_syn, R = R_D_syn, I = I_D_syn, AP = AP_D_aux, t_f = t_f_E, t_d = t_d_E, t_s = t_s_E, U = U_E, A = A_E, dt = dt, p = p)
# Synapse - With Thalamus
syn_D_T = tm_synapse_eq(u = u_D_syn, R = R_D_syn, I = I_D_syn, AP = AP_D_aux, t_f = t_f_E, t_d = t_d_E, t_s = t_s_E, U = U_E, A = A_E_D_T, dt = dt, p = p)
R_D_syn = 1*syn_D['R']
u_D_syn = 1*syn_D['u']
I_D_syn = 1*syn_D['I']
I_syn[0][d] = 1*syn_D['Ipost']
I_syn_t[0][d] = 1*syn_D_T['Ipost']
PSC_D[0][t] = np.sum(I_syn)
PSC_D_T[0][t] = np.sum(I_syn_t)
return v_D, u_D, PSC_D, u_D_syn, I_D_syn, R_D_syn, PSC_D_T