-
Notifications
You must be signed in to change notification settings - Fork 1
/
report.c
797 lines (728 loc) · 28.4 KB
/
report.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*
report.c - reporting and messaging methods
Part of Grbl
Copyright (c) 2017-2018 Gauthier Briere
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This file functions as the primary feedback interface for Grbl. Any outgoing data, such
as the protocol status messages, feedback messages, and status reports, are stored here.
For the most part, these functions primarily are called from protocol.c methods. If a
different style feedback is desired (i.e. JSON), then a user can change these following
methods to accomodate their needs.
*/
#include "grbl.h"
#include <stdarg.h>
// Internal report utilities to reduce flash with repetitive tasks turned into functions.
void report_util_setting_prefix(uint8_t n) { serial_write('$'); print_uint8_base10(n); serial_write('='); }
static void report_util_line_feed() { printPgmString(PSTR("\r\n")); }
static void report_util_feedback_line_feed() { serial_write(']'); report_util_line_feed(); }
static void report_util_gcode_modes_G() { printPgmString(PSTR(" G")); }
static void report_util_gcode_modes_M() { printPgmString(PSTR(" M")); }
// static void report_util_comment_line_feed() { serial_write(')'); report_util_line_feed(); }
static void report_util_axis_values(float *axis_value) {
#ifdef SORT_REPORT_BY_AXIS_NAME
extern uint8_t n_axis_report; // Global nombre de nom d'axes différents
#endif
#ifdef SORT_REPORT_BY_AXIS_NAME
char axis_name_order[] = AXIS_NAME_SORT_ORDER;
int8_t n_report = 0;
#endif
// If this option is enabled, the sorting order will be X, Y, Z, U, V, W, A, B and C.
// defined by AXIS_NAME_SORT_ORDER
#ifdef SORT_REPORT_BY_AXIS_NAME
// Output axis_names in order of AXIS_NAME_SORT_ORDER et traiter REPORT_VALUE_FOR_AXIS_NAME_ONCE
for (int i=0; i<9; i++) {
if (AXIS_1_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[0]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
if (AXIS_2_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[1]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
if (AXIS_3_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[2]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#if N_AXIS >3
if (AXIS_4_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[3]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
#if N_AXIS >4
if (AXIS_5_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[4]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
#if N_AXIS >5
if (AXIS_6_NAME == axis_name_order[i]) {
printFloat_CoordValue(axis_value[5]);
n_report++;
if (n_report < (n_axis_report)) { serial_write(','); }
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
}
#else // #ifdef SORT_REPORT_BY_AXIS_NAME
for (uint8_t idx=0; idx<N_AXIS; idx++) {
printFloat_CoordValue(axis_value[idx]);
if (idx < (N_AXIS-1)) { serial_write(','); }
}
#endif
}
/*
static void report_util_setting_string(uint8_t n) {
serial_write(' ');
serial_write('(');
switch(n) {
case 0: printPgmString(PSTR("stp pulse")); break;
case 1: printPgmString(PSTR("idl delay")); break;
case 2: printPgmString(PSTR("stp inv")); break;
case 3: printPgmString(PSTR("dir inv")); break;
case 4: printPgmString(PSTR("stp en inv")); break;
case 5: printPgmString(PSTR("lim inv")); break;
case 6: printPgmString(PSTR("prb inv")); break;
case 10: printPgmString(PSTR("rpt")); break;
case 11: printPgmString(PSTR("jnc dev")); break;
case 12: printPgmString(PSTR("arc tol")); break;
case 13: printPgmString(PSTR("rpt inch")); break;
case 20: printPgmString(PSTR("sft lim")); break;
case 21: printPgmString(PSTR("hrd lim")); break;
case 22: printPgmString(PSTR("hm cyc")); break;
case 23: printPgmString(PSTR("hm dir inv")); break;
case 24: printPgmString(PSTR("hm feed")); break;
case 25: printPgmString(PSTR("hm seek")); break;
case 26: printPgmString(PSTR("hm delay")); break;
case 27: printPgmString(PSTR("hm pulloff")); break;
case 30: printPgmString(PSTR("rpm max")); break;
case 31: printPgmString(PSTR("rpm min")); break;
case 32: printPgmString(PSTR("laser")); break;
default:
n -= AXIS_SETTINGS_START_VAL;
uint8_t idx = 0;
while (n >= AXIS_SETTINGS_INCREMENT) {
n -= AXIS_SETTINGS_INCREMENT;
idx++;
}
serial_write(n+'x');
switch (idx) {
case 0: printPgmString(PSTR(":stp/mm")); break;
case 1: printPgmString(PSTR(":mm/min")); break;
case 2: printPgmString(PSTR(":mm/s^2")); break;
case 3: printPgmString(PSTR(":mm max")); break;
}
break;
}
report_util_comment_line_feed();
}
*/
static void report_util_uint8_setting(uint8_t n, int val) {
report_util_setting_prefix(n);
print_uint8_base10(val);
report_util_line_feed(); // report_util_setting_string(n);
}
static void report_util_float_setting(uint8_t n, float val, uint8_t n_decimal) {
report_util_setting_prefix(n);
printFloat(val,n_decimal);
report_util_line_feed(); // report_util_setting_string(n);
}
// Handles the primary confirmation protocol response for streaming interfaces and human-feedback.
// For every incoming line, this method responds with an 'ok' for a successful command or an
// 'error:' to indicate some error event with the line or some critical system error during
// operation. Errors events can originate from the g-code parser, settings module, or asynchronously
// from a critical error, such as a triggered hard limit. Interface should always monitor for these
// responses.
void report_status_message(uint8_t status_code)
{
switch(status_code) {
case STATUS_OK: // STATUS_OK
printPgmString(PSTR("ok\r\n")); break;
default:
printPgmString(PSTR("error:"));
print_uint8_base10(status_code);
report_util_line_feed();
}
}
// Prints alarm messages.
void report_alarm_message(uint8_t alarm_code)
{
printPgmString(PSTR("ALARM:"));
print_uint8_base10(alarm_code);
report_util_line_feed();
delay_ms(500); // Force delay to ensure message clears serial write buffer.
}
// Prints feedback messages. This serves as a centralized method to provide additional
// user feedback for things that are not of the status/alarm message protocol. These are
// messages such as setup warnings, switch toggling, and how to exit alarms.
// NOTE: For interfaces, messages are always placed within brackets. And if silent mode
// is installed, the message number codes are less than zero.
void report_feedback_message(uint8_t message_code)
{
printPgmString(PSTR("[MSG:"));
switch(message_code) {
case MESSAGE_CRITICAL_EVENT:
printPgmString(PSTR("Reset to continue")); break;
case MESSAGE_ALARM_LOCK:
printPgmString(PSTR("'$H'|'$X' to unlock")); break;
case MESSAGE_ALARM_UNLOCK:
printPgmString(PSTR("Caution: Unlocked")); break;
case MESSAGE_ENABLED:
printPgmString(PSTR("Enabled")); break;
case MESSAGE_DISABLED:
printPgmString(PSTR("Disabled")); break;
case MESSAGE_SAFETY_DOOR_AJAR:
printPgmString(PSTR("Check Door")); break;
case MESSAGE_CHECK_LIMITS:
printPgmString(PSTR("Check Limits")); break;
case MESSAGE_PROGRAM_END:
printPgmString(PSTR("Pgm End")); break;
case MESSAGE_RESTORE_DEFAULTS:
printPgmString(PSTR("Restoring defaults")); break;
case MESSAGE_SPINDLE_RESTORE:
printPgmString(PSTR("Restoring spindle")); break;
case MESSAGE_SLEEP_MODE:
printPgmString(PSTR("Sleeping")); break;
}
report_util_feedback_line_feed();
}
// Welcome message
void report_init_message()
{
printPgmString(PSTR("\r\nGrbl " GRBL_VERSION " ['$' for help]\r\n"));
}
// Grbl help message
void report_grbl_help() {
printPgmString(PSTR("[HLP:$$ $# $G $I $N $x=val $Nx=line $J=line $SLP $C $X $H ~ ! ? ctrl-x]\r\n"));
}
// Grbl global settings print out.
// NOTE: The numbering scheme here must correlate to storing in settings.c
void report_grbl_settings() {
// Print Grbl settings.
report_util_uint8_setting(0,settings.pulse_microseconds);
report_util_uint8_setting(1,settings.stepper_idle_lock_time);
report_util_uint8_setting(2,settings.step_invert_mask);
report_util_uint8_setting(3,settings.dir_invert_mask);
report_util_uint8_setting(4,bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
report_util_uint8_setting(5,bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
report_util_uint8_setting(6,bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
report_util_uint8_setting(10,settings.status_report_mask);
report_util_float_setting(11,settings.junction_deviation,N_DECIMAL_SETTINGVALUE);
report_util_float_setting(12,settings.arc_tolerance,N_DECIMAL_SETTINGVALUE);
report_util_uint8_setting(13,bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
report_util_uint8_setting(20,bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
report_util_uint8_setting(21,bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
report_util_uint8_setting(22,bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
report_util_uint8_setting(23,settings.homing_dir_mask);
report_util_float_setting(24,settings.homing_feed_rate,N_DECIMAL_SETTINGVALUE);
report_util_float_setting(25,settings.homing_seek_rate,N_DECIMAL_SETTINGVALUE);
report_util_uint8_setting(26,settings.homing_debounce_delay);
report_util_float_setting(27,settings.homing_pulloff,N_DECIMAL_SETTINGVALUE);
report_util_float_setting(30,settings.rpm_max,N_DECIMAL_RPMVALUE);
report_util_float_setting(31,settings.rpm_min,N_DECIMAL_RPMVALUE);
report_util_uint8_setting(32,bit_istrue(settings.flags,BITFLAG_LASER_MODE));
// Print axis settings
uint8_t idx, set_idx;
uint8_t val = AXIS_SETTINGS_START_VAL;
for (set_idx=0; set_idx<AXIS_N_SETTINGS; set_idx++) {
for (idx=0; idx<N_AXIS; idx++) {
switch (set_idx) {
case 0: report_util_float_setting(val+idx,settings.steps_per_mm[idx],N_DECIMAL_SETTINGVALUE); break;
case 1: report_util_float_setting(val+idx,settings.max_rate[idx],N_DECIMAL_SETTINGVALUE); break;
case 2: report_util_float_setting(val+idx,settings.acceleration[idx]/(60*60),N_DECIMAL_SETTINGVALUE); break;
case 3: report_util_float_setting(val+idx,-settings.max_travel[idx],N_DECIMAL_SETTINGVALUE); break;
}
}
val += AXIS_SETTINGS_INCREMENT;
}
}
// Prints current probe parameters. Upon a probe command, these parameters are updated upon a
// successful probe or upon a failed probe with the G38.3 without errors command (if supported).
// These values are retained until Grbl is power-cycled, whereby they will be re-zeroed.
void report_probe_parameters()
{
// Report in terms of machine position.
printPgmString(PSTR("[PRB:"));
float print_position[N_AXIS];
system_convert_array_steps_to_mpos(print_position,sys_probe_position);
report_util_axis_values(print_position);
serial_write(':');
print_uint8_base10(sys.probe_succeeded);
report_util_feedback_line_feed();
}
// Prints Grbl NGC parameters (coordinate offsets, probing)
void report_ngc_parameters()
{
float coord_data[N_AXIS];
uint8_t coord_select;
for (coord_select = 0; coord_select <= SETTING_INDEX_NCOORD; coord_select++) {
if (!(settings_read_coord_data(coord_select,coord_data))) {
report_status_message(STATUS_SETTING_READ_FAIL);
return;
}
printPgmString(PSTR("[G"));
switch (coord_select) {
case 6: printPgmString(PSTR("28")); break;
case 7: printPgmString(PSTR("30")); break;
default: print_uint8_base10(coord_select+54); break; // G54-G59
}
serial_write(':');
report_util_axis_values(coord_data);
report_util_feedback_line_feed();
}
printPgmString(PSTR("[G92:")); // Print G92,G92.1 which are not persistent in memory
report_util_axis_values(gc_state.coord_offset);
report_util_feedback_line_feed();
printPgmString(PSTR("[TLO:")); // Print tool length offset value
printFloat_CoordValue(gc_state.tool_length_offset);
report_util_feedback_line_feed();
report_probe_parameters(); // Print probe parameters. Not persistent in memory.
}
// Print current gcode parser mode state
void report_gcode_modes()
{
printPgmString(PSTR("[GC:G"));
if (gc_state.modal.motion >= MOTION_MODE_PROBE_TOWARD) {
printPgmString(PSTR("38."));
print_uint8_base10(gc_state.modal.motion - (MOTION_MODE_PROBE_TOWARD-2));
} else {
print_uint8_base10(gc_state.modal.motion);
}
report_util_gcode_modes_G();
print_uint8_base10(gc_state.modal.coord_select+54);
report_util_gcode_modes_G();
print_uint8_base10(gc_state.modal.plane_select+17);
report_util_gcode_modes_G();
print_uint8_base10(21-gc_state.modal.units);
report_util_gcode_modes_G();
print_uint8_base10(gc_state.modal.distance+90);
report_util_gcode_modes_G();
print_uint8_base10(94-gc_state.modal.feed_rate);
if (gc_state.modal.program_flow) {
report_util_gcode_modes_M();
switch (gc_state.modal.program_flow) {
case PROGRAM_FLOW_PAUSED : serial_write('0'); break;
// case PROGRAM_FLOW_OPTIONAL_STOP : serial_write('1'); break; // M1 is ignored and not supported.
case PROGRAM_FLOW_COMPLETED_M2 :
case PROGRAM_FLOW_COMPLETED_M30 :
print_uint8_base10(gc_state.modal.program_flow);
break;
}
}
report_util_gcode_modes_M();
switch (gc_state.modal.spindle) {
case SPINDLE_ENABLE_CW : serial_write('3'); break;
case SPINDLE_ENABLE_CCW : serial_write('4'); break;
case SPINDLE_DISABLE : serial_write('5'); break;
}
report_util_gcode_modes_M();
if (gc_state.modal.coolant) { // Note: Multiple coolant states may be active at the same time.
if (gc_state.modal.coolant & PL_COND_FLAG_COOLANT_MIST) { serial_write('7'); }
if (gc_state.modal.coolant & PL_COND_FLAG_COOLANT_FLOOD) { serial_write('8'); }
} else { serial_write('9'); }
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if (sys.override_ctrl == OVERRIDE_PARKING_MOTION) {
report_util_gcode_modes_M();
print_uint8_base10(56);
}
#endif
printPgmString(PSTR(" T"));
print_uint8_base10(gc_state.tool);
printPgmString(PSTR(" F"));
printFloat_RateValue(gc_state.feed_rate);
printPgmString(PSTR(" S"));
printFloat(gc_state.spindle_speed,N_DECIMAL_RPMVALUE);
report_util_feedback_line_feed();
}
// Prints specified startup line
void report_startup_line(uint8_t n, char *line)
{
printPgmString(PSTR("$N"));
print_uint8_base10(n);
serial_write('=');
printString(line);
report_util_line_feed();
}
void report_execute_startup_message(char *line, uint8_t status_code)
{
serial_write('>');
printString(line);
serial_write(':');
report_status_message(status_code);
}
// Prints build info line
void report_build_info(char *line)
{
#ifdef SORT_REPORT_BY_AXIS_NAME
char axis_name_order[] = AXIS_NAME_SORT_ORDER;
#endif
printPgmString(PSTR("[VER:" GRBL_VERSION "." GRBL_VERSION_BUILD ":"));
printString(line);
report_util_feedback_line_feed();
printPgmString(PSTR("[AXS:"));
print_uint8_base10(N_AXIS);
printPgmString(PSTR(":"));
// If this option is enabled, the sorting order will be X, Y, Z, U, V, W, A, B and C.
// defined by AXIS_NAME_SORT_ORDER
#ifdef SORT_REPORT_BY_AXIS_NAME
// Output axis_names in order of AXIS_NAME_SORT_ORDER et traiter REPORT_VALUE_FOR_AXIS_NAME_ONCE
for (int i=0; i<9; i++) {
if (AXIS_1_NAME == axis_name_order[i]) {
serial_write(AXIS_1_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
if (AXIS_2_NAME == axis_name_order[i]) {
serial_write(AXIS_2_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
if (AXIS_3_NAME == axis_name_order[i]) {
serial_write(AXIS_3_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#if N_AXIS > 3
if (AXIS_4_NAME == axis_name_order[i]) {
serial_write(AXIS_4_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
#if N_AXIS > 4
if (AXIS_5_NAME == axis_name_order[i]) {
serial_write(AXIS_5_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
#if N_AXIS > 5
if (AXIS_6_NAME == axis_name_order[i]) {
serial_write(AXIS_6_NAME);
#ifdef REPORT_VALUE_FOR_AXIS_NAME_ONCE
axis_name_order[i] = '\0';
#endif
}
#endif
}
#else
// Output axis_names in order of axis number
serial_write(AXIS_1_NAME);
serial_write(AXIS_2_NAME);
serial_write(AXIS_3_NAME);
#if N_AXIS > 3
serial_write(AXIS_4_NAME);
#endif
#if N_AXIS > 4
serial_write(AXIS_5_NAME);
#endif
#if N_AXIS > 5
serial_write(AXIS_6_NAME);
#endif
#endif
report_util_feedback_line_feed();
printPgmString(PSTR("[OPT:")); // Generate compile-time build option list
serial_write('V'); // Variable spindle standard.
serial_write('N'); // Line number reporting standard.
serial_write('M'); // M7 mist coolant standard.
serial_write('G'); // Safety door support standard.
#ifdef COREXY
serial_write('C');
#endif
#ifdef PARKING_ENABLE
serial_write('P');
#endif
#ifdef HOMING_FORCE_SET_ORIGIN
serial_write('Z');
#endif
#ifdef HOMING_SINGLE_AXIS_COMMANDS
serial_write('H');
#endif
#ifdef LIMITS_TWO_SWITCHES_ON_AXES
serial_write('T');
#endif
#ifdef ALLOW_FEED_OVERRIDE_DURING_PROBE_CYCLES
serial_write('A');
#endif
#ifdef SPINDLE_ENABLE_OFF_WITH_ZERO_SPEED
serial_write('0');
#endif
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
serial_write('R');
#endif
#ifndef HOMING_INIT_LOCK
serial_write('L');
#endif
#ifndef ENABLE_RESTORE_EEPROM_WIPE_ALL // NOTE: Shown when disabled.
serial_write('*');
#endif
#ifndef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS // NOTE: Shown when disabled.
serial_write('$');
#endif
#ifndef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS // NOTE: Shown when disabled.
serial_write('#');
#endif
#ifndef ENABLE_BUILD_INFO_WRITE_COMMAND // NOTE: Shown when disabled.
serial_write('I');
#endif
#ifndef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE // NOTE: Shown when disabled.
serial_write('E');
#endif
#ifndef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE // NOTE: Shown when disabled.
serial_write('W');
#endif
// NOTE: Compiled values, like override increments/max/min values, may be added at some point later.
serial_write(',');
print_uint8_base10(BLOCK_BUFFER_SIZE-1);
serial_write(',');
print_uint8_base10(RX_BUFFER_SIZE);
serial_write(',');
print_uint8_base10(settings.flags);
report_util_feedback_line_feed();
}
// Prints the character string line Grbl has received from the user, which has been pre-parsed,
// and has been sent into protocol_execute_line() routine to be executed by Grbl.
void report_echo_line_received(char *line)
{
printPgmString(PSTR("[echo: ")); printString(line);
report_util_feedback_line_feed();
}
// Prints real-time data. This function grabs a real-time snapshot of the stepper subprogram
// and the actual location of the CNC machine. Users may change the following function to their
// specific needs, but the desired real-time data report must be as short as possible. This is
// requires as it minimizes the computational overhead and allows grbl to keep running smoothly,
// especially during g-code programs with fast, short line segments and high frequency reports (5-20Hz).
void report_realtime_status()
{
uint8_t idx;
int32_t current_position[N_AXIS]; // Copy current state of the system position variable
memcpy(current_position,sys_position,sizeof(sys_position));
float print_position[N_AXIS];
system_convert_array_steps_to_mpos(print_position,current_position);
// Report current machine state and sub-states
serial_write('<');
switch (sys.state) {
case STATE_IDLE: printPgmString(PSTR("Idle")); break;
case STATE_CYCLE: printPgmString(PSTR("Run")); break;
case STATE_HOLD:
if (!(sys.suspend & SUSPEND_JOG_CANCEL)) {
printPgmString(PSTR("Hold:"));
if (sys.suspend & SUSPEND_HOLD_COMPLETE) { serial_write('0'); } // Ready to resume
else { serial_write('1'); } // Actively holding
break;
} // Continues to print jog state during jog cancel.
case STATE_JOG: printPgmString(PSTR("Jog")); break;
case STATE_HOMING: printPgmString(PSTR("Home")); break;
case STATE_ALARM: printPgmString(PSTR("Alarm")); break;
case STATE_CHECK_MODE: printPgmString(PSTR("Check")); break;
case STATE_SAFETY_DOOR:
printPgmString(PSTR("Door:"));
if (sys.suspend & SUSPEND_INITIATE_RESTORE) {
serial_write('3'); // Restoring
} else {
if (sys.suspend & SUSPEND_RETRACT_COMPLETE) {
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) {
serial_write('1'); // Door ajar
} else {
serial_write('0');
} // Door closed and ready to resume
} else {
serial_write('2'); // Retracting
}
}
break;
case STATE_SLEEP: printPgmString(PSTR("Sleep")); break;
}
float wco[N_AXIS];
if (bit_isfalse(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE) ||
(sys.report_wco_counter == 0) ) {
for (idx=0; idx< N_AXIS; idx++) {
// Apply work coordinate offsets and tool length offset to current position.
wco[idx] = gc_state.coord_system[idx]+gc_state.coord_offset[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { wco[idx] += gc_state.tool_length_offset; }
if (bit_isfalse(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE)) {
print_position[idx] -= wco[idx];
}
}
}
// Report machine position
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE)) {
printPgmString(PSTR("|MPos:"));
} else {
printPgmString(PSTR("|WPos:"));
}
report_util_axis_values(print_position);
// Returns planner and serial read buffer states.
#ifdef REPORT_FIELD_BUFFER_STATE
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_BUFFER_STATE)) {
printPgmString(PSTR("|Bf:"));
print_uint8_base10(plan_get_block_buffer_available());
serial_write(',');
print_uint8_base10(serial_get_rx_buffer_available());
}
#endif
#ifdef REPORT_FIELD_LINE_NUMBERS
// Report current line number
plan_block_t * cur_block = plan_get_current_block();
if (cur_block != NULL) {
uint32_t ln = cur_block->line_number;
if (ln > 0) {
printPgmString(PSTR("|Ln:"));
printInteger(ln);
}
}
#endif
// Report realtime feed speed
#ifdef REPORT_FIELD_CURRENT_FEED_SPEED
printPgmString(PSTR("|FS:"));
printFloat_RateValue(st_get_realtime_rate());
serial_write(',');
printFloat(sys.spindle_speed,N_DECIMAL_RPMVALUE);
#endif
#ifdef REPORT_FIELD_PIN_STATE
uint8_t lim_pin_state = limits_get_state();
uint8_t ctrl_pin_state = system_control_get_state();
uint8_t prb_pin_state = probe_get_state();
if (lim_pin_state | ctrl_pin_state | prb_pin_state) {
printPgmString(PSTR("|Pn:"));
if (prb_pin_state) { serial_write('P'); }
if (lim_pin_state) {
if (bit_istrue(lim_pin_state,bit(AXIS_1))) { serial_write(AXIS_1_NAME); }
if (bit_istrue(lim_pin_state,bit(AXIS_2))) { serial_write(AXIS_2_NAME); }
if (bit_istrue(lim_pin_state,bit(AXIS_3))) { serial_write(AXIS_3_NAME); }
#if N_AXIS > 3
if (bit_istrue(lim_pin_state,bit(AXIS_4))) { serial_write(AXIS_4_NAME); }
#endif
#if N_AXIS > 4
if (bit_istrue(lim_pin_state,bit(AXIS_5))) { serial_write(AXIS_5_NAME); }
#endif
#if N_AXIS > 5
if (bit_istrue(lim_pin_state,bit(AXIS_6))) { serial_write(AXIS_6_NAME); }
#endif
}
if (ctrl_pin_state) {
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_SAFETY_DOOR)) { serial_write('D'); }
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_RESET)) { serial_write('R'); }
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_FEED_HOLD)) { serial_write('H'); }
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_CYCLE_START)) { serial_write('S'); }
}
}
#endif
#ifdef DEBUG
printPgmString(PSTR("|Dbg:"));
// Other debugs here...
#endif
#ifdef REPORT_FIELD_WORK_COORD_OFFSET
if (sys.report_wco_counter > 0) { sys.report_wco_counter--; }
else {
if (sys.state & (STATE_HOMING | STATE_CYCLE | STATE_HOLD | STATE_JOG | STATE_SAFETY_DOOR)) {
sys.report_wco_counter = (REPORT_WCO_REFRESH_BUSY_COUNT-1); // Reset counter for slow refresh
} else { sys.report_wco_counter = (REPORT_WCO_REFRESH_IDLE_COUNT-1); }
if (sys.report_ovr_counter == 0) { sys.report_ovr_counter = 1; } // Set override on next report.
printPgmString(PSTR("|WCO:"));
report_util_axis_values(wco);
}
#endif
#ifdef REPORT_FIELD_OVERRIDES
if (sys.report_ovr_counter > 0) { sys.report_ovr_counter--; }
else {
if (sys.state & (STATE_HOMING | STATE_CYCLE | STATE_HOLD | STATE_JOG | STATE_SAFETY_DOOR)) {
sys.report_ovr_counter = (REPORT_OVR_REFRESH_BUSY_COUNT-1); // Reset counter for slow refresh
} else { sys.report_ovr_counter = (REPORT_OVR_REFRESH_IDLE_COUNT-1); }
printPgmString(PSTR("|Ov:"));
print_uint8_base10(sys.f_override);
serial_write(',');
print_uint8_base10(sys.r_override);
serial_write(',');
print_uint8_base10(sys.spindle_speed_ovr);
uint8_t sp_state = spindle_get_state();
uint8_t cl_state = coolant_get_state();
uint8_t dg_state = digital_get_state();
if (sp_state || cl_state || dg_state) {
printPgmString(PSTR("|A:"));
if (sp_state) { // != SPINDLE_STATE_DISABLE
if (sp_state == SPINDLE_STATE_CW) { serial_write('S'); } // CW
else { serial_write('C'); } // CCW
}
if (cl_state & COOLANT_STATE_FLOOD) { serial_write('F'); }
if (cl_state & COOLANT_STATE_MIST) { serial_write('M'); }
if (dg_state) { // One or more digital output is active
serial_write('D');
if (dg_state & DIGITAL_OUTPUT_STATE_P3) { serial_write('1'); } else {serial_write('0');}
if (dg_state & DIGITAL_OUTPUT_STATE_P2) { serial_write('1'); } else {serial_write('0');}
if (dg_state & DIGITAL_OUTPUT_STATE_P1) { serial_write('1'); } else {serial_write('0');}
if (dg_state & DIGITAL_OUTPUT_STATE_P0) { serial_write('1'); } else {serial_write('0');}
}
}
}
#endif
serial_write('>');
report_util_line_feed();
}
#ifdef DEBUG
// Report debug string on serial
void report_debug_string(char *line)
{
printPgmString(PSTR("{debug("));
printString(line);
printPgmString(PSTR(")}"));
report_util_line_feed();
}
// Report debug int value
// This function accept the variable's name string as optional argument
void report_debug_int(uint8_t val, ...)
{
va_list args;
char *valname;
va_start(args, val);
valname = va_arg(args, char *);
va_end(args);
printPgmString(PSTR("{debug("));
if ( valname != NULL ) {
printString(valname);
printString(" = ");
}
print_uint8_base10(val);
printPgmString(PSTR(")}"));
report_util_line_feed();
}
#endif // DEBUG