-
Notifications
You must be signed in to change notification settings - Fork 1
/
settings.c
400 lines (360 loc) · 15 KB
/
settings.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
settings.c - eeprom configuration handling
Part of Grbl
Copyright (c) 2017-2018 Gauthier Briere
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
settings_t settings;
const __flash settings_t defaults = {
.pulse_microseconds = DEFAULT_STEP_PULSE_MICROSECONDS,
.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME,
.step_invert_mask = DEFAULT_STEPPING_INVERT_MASK,
.dir_invert_mask = DEFAULT_DIRECTION_INVERT_MASK,
.status_report_mask = DEFAULT_STATUS_REPORT_MASK,
.junction_deviation = DEFAULT_JUNCTION_DEVIATION,
.arc_tolerance = DEFAULT_ARC_TOLERANCE,
.rpm_max = DEFAULT_SPINDLE_RPM_MAX,
.rpm_min = DEFAULT_SPINDLE_RPM_MIN,
.homing_dir_mask = DEFAULT_HOMING_DIR_MASK,
.homing_feed_rate = DEFAULT_HOMING_FEED_RATE,
.homing_seek_rate = DEFAULT_HOMING_SEEK_RATE,
.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY,
.homing_pulloff = DEFAULT_HOMING_PULLOFF,
.flags = (DEFAULT_REPORT_INCHES << BIT_REPORT_INCHES) |
(DEFAULT_LASER_MODE << BIT_LASER_MODE) |
(DEFAULT_INVERT_ST_ENABLE << BIT_INVERT_ST_ENABLE) |
(DEFAULT_HARD_LIMIT_ENABLE << BIT_HARD_LIMIT_ENABLE) |
(DEFAULT_HOMING_ENABLE << BIT_HOMING_ENABLE) |
(DEFAULT_SOFT_LIMIT_ENABLE << BIT_SOFT_LIMIT_ENABLE) |
(DEFAULT_INVERT_LIMIT_PINS << BIT_INVERT_LIMIT_PINS) |
(DEFAULT_INVERT_PROBE_PIN << BIT_INVERT_PROBE_PIN),
.steps_per_mm[AXIS_1] = DEFAULT_AXIS1_STEPS_PER_UNIT,
.steps_per_mm[AXIS_2] = DEFAULT_AXIS2_STEPS_PER_UNIT,
.steps_per_mm[AXIS_3] = DEFAULT_AXIS3_STEPS_PER_UNIT,
.max_rate[AXIS_1] = DEFAULT_AXIS1_MAX_RATE,
.max_rate[AXIS_2] = DEFAULT_AXIS2_MAX_RATE,
.max_rate[AXIS_3] = DEFAULT_AXIS3_MAX_RATE,
.acceleration[AXIS_1] = DEFAULT_AXIS1_ACCELERATION,
.acceleration[AXIS_2] = DEFAULT_AXIS2_ACCELERATION,
.acceleration[AXIS_3] = DEFAULT_AXIS3_ACCELERATION,
.max_travel[AXIS_1] = (-DEFAULT_AXIS1_MAX_TRAVEL),
.max_travel[AXIS_2] = (-DEFAULT_AXIS2_MAX_TRAVEL),
.max_travel[AXIS_3] = (-DEFAULT_AXIS3_MAX_TRAVEL),
#if N_AXIS > 3
.steps_per_mm[AXIS_4] = DEFAULT_AXIS4_STEPS_PER_UNIT,
.max_rate[AXIS_4] = DEFAULT_AXIS4_MAX_RATE,
.acceleration[AXIS_4] = DEFAULT_AXIS4_ACCELERATION,
.max_travel[AXIS_4] = (-DEFAULT_AXIS4_MAX_TRAVEL),
#endif
#if N_AXIS > 4
.steps_per_mm[AXIS_5] = DEFAULT_AXIS5_STEPS_PER_UNIT,
.max_rate[AXIS_5] = DEFAULT_AXIS5_MAX_RATE,
.acceleration[AXIS_5] = DEFAULT_AXIS5_ACCELERATION,
.max_travel[AXIS_5] = (-DEFAULT_AXIS5_MAX_TRAVEL),
#endif
#if N_AXIS > 5
.steps_per_mm[AXIS_6] = DEFAULT_AXIS6_STEPS_PER_UNIT,
.max_rate[AXIS_6] = DEFAULT_AXIS6_MAX_RATE,
.acceleration[AXIS_6] = DEFAULT_AXIS6_ACCELERATION,
.max_travel[AXIS_6] = (-DEFAULT_AXIS6_MAX_TRAVEL),
#endif
};
// Method to store startup lines into EEPROM
void settings_store_startup_line(uint8_t n, char *line)
{
#ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE
protocol_buffer_synchronize(); // A startup line may contain a motion and be executing.
#endif
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
memcpy_to_eeprom_with_checksum(addr,(char*)line, LINE_BUFFER_SIZE);
}
// Method to store build info into EEPROM
// NOTE: This function can only be called in IDLE state.
void settings_store_build_info(char *line)
{
// Build info can only be stored when state is IDLE.
memcpy_to_eeprom_with_checksum(EEPROM_ADDR_BUILD_INFO,(char*)line, LINE_BUFFER_SIZE);
}
// Method to store coord data parameters into EEPROM
void settings_write_coord_data(uint8_t coord_select, float *coord_data)
{
#ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE
protocol_buffer_synchronize();
#endif
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
memcpy_to_eeprom_with_checksum(addr,(char*)coord_data, sizeof(float)*N_AXIS);
}
// Method to store Grbl global settings struct and version number into EEPROM
// NOTE: This function can only be called in IDLE state.
void write_global_settings()
{
eeprom_put_char(0, SETTINGS_VERSION);
memcpy_to_eeprom_with_checksum(EEPROM_ADDR_GLOBAL, (char*)&settings, sizeof(settings_t));
}
// Method to restore EEPROM-saved Grbl global settings back to defaults.
void settings_restore(uint8_t restore_flag) {
if (restore_flag & SETTINGS_RESTORE_DEFAULTS) {
settings = defaults;
write_global_settings();
}
if (restore_flag & SETTINGS_RESTORE_PARAMETERS) {
uint8_t idx;
float coord_data[N_AXIS];
memset(&coord_data, 0, sizeof(coord_data));
for (idx=0; idx <= SETTING_INDEX_NCOORD; idx++) { settings_write_coord_data(idx, coord_data); }
}
if (restore_flag & SETTINGS_RESTORE_STARTUP_LINES) {
#if N_STARTUP_LINE > 0
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK, 0);
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK+1, 0); // Checksum
#endif
#if N_STARTUP_LINE > 1
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+1), 0);
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+2), 0); // Checksum
#endif
}
if (restore_flag & SETTINGS_RESTORE_BUILD_INFO) {
eeprom_put_char(EEPROM_ADDR_BUILD_INFO , 0);
eeprom_put_char(EEPROM_ADDR_BUILD_INFO+1 , 0); // Checksum
}
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t settings_read_startup_line(uint8_t n, char *line)
{
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
if (!(memcpy_from_eeprom_with_checksum((char*)line, addr, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
settings_store_startup_line(n, line);
return(false);
}
return(true);
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t settings_read_build_info(char *line)
{
if (!(memcpy_from_eeprom_with_checksum((char*)line, EEPROM_ADDR_BUILD_INFO, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
settings_store_build_info(line);
return(false);
}
return(true);
}
// Read selected coordinate data from EEPROM. Updates pointed coord_data value.
uint8_t settings_read_coord_data(uint8_t coord_select, float *coord_data)
{
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
if (!(memcpy_from_eeprom_with_checksum((char*)coord_data, addr, sizeof(float)*N_AXIS))) {
// Reset with default zero vector
clear_vector_float(coord_data);
settings_write_coord_data(coord_select,coord_data);
return(false);
}
return(true);
}
// Reads Grbl global settings struct from EEPROM.
uint8_t read_global_settings() {
// Check version-byte of eeprom
uint8_t version = eeprom_get_char(0);
if (version == SETTINGS_VERSION) {
// Read settings-record and check checksum
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, EEPROM_ADDR_GLOBAL, sizeof(settings_t)))) {
return(false);
}
} else {
return(false);
}
return(true);
}
// A helper method to set settings from command line
uint8_t settings_store_global_setting(uint8_t parameter, float value) {
if (value < 0.0) { return(STATUS_NEGATIVE_VALUE); }
if (parameter >= AXIS_SETTINGS_START_VAL) {
// Store axis configuration. Axis numbering sequence set by AXIS_SETTING defines.
// NOTE: Ensure the setting index corresponds to the report.c settings printout.
parameter -= AXIS_SETTINGS_START_VAL;
uint8_t set_idx = 0;
while (set_idx < AXIS_N_SETTINGS) {
if (parameter < N_AXIS) {
// Valid axis setting found.
switch (set_idx) {
case 0:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.max_rate[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.steps_per_mm[parameter] = value;
break;
case 1:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.steps_per_mm[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.max_rate[parameter] = value;
break;
case 2: settings.acceleration[parameter] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 3: settings.max_travel[parameter] = -value; break; // Store as negative for grbl internal use.
}
break; // Exit while-loop after setting has been configured and proceed to the EEPROM write call.
} else {
set_idx++;
// If axis index greater than N_AXIS or setting index greater than number of axis settings, error out.
if ((parameter < AXIS_SETTINGS_INCREMENT) || (set_idx == AXIS_N_SETTINGS)) { return(STATUS_INVALID_STATEMENT); }
parameter -= AXIS_SETTINGS_INCREMENT;
}
}
} else {
// Store non-axis Grbl settings
uint8_t int_value = trunc(value);
switch(parameter) {
case 0:
if (int_value < 3) { return(STATUS_SETTING_STEP_PULSE_MIN); }
settings.pulse_microseconds = int_value; break;
case 1: settings.stepper_idle_lock_time = int_value; break;
case 2:
settings.step_invert_mask = int_value;
st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks.
break;
case 3:
settings.dir_invert_mask = int_value;
st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks.
break;
case 4: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; }
break;
case 5: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; }
else { settings.flags &= ~BITFLAG_INVERT_LIMIT_PINS; }
break;
case 6: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; }
else { settings.flags &= ~BITFLAG_INVERT_PROBE_PIN; }
probe_configure_invert_mask(false);
break;
case 10: settings.status_report_mask = int_value; break;
case 11: settings.junction_deviation = value; break;
case 12: settings.arc_tolerance = value; break;
case 13:
if (int_value) { settings.flags |= BITFLAG_REPORT_INCHES; }
else { settings.flags &= ~BITFLAG_REPORT_INCHES; }
system_flag_wco_change(); // Make sure WCO is immediately updated.
break;
case 20:
if (int_value) {
if (bit_isfalse(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); }
settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE;
} else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; }
break;
case 21:
if (int_value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; }
limits_init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later.
break;
case 22:
if (int_value) { settings.flags |= BITFLAG_HOMING_ENABLE; }
else {
settings.flags &= ~BITFLAG_HOMING_ENABLE;
settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; // Force disable soft-limits.
}
break;
case 23: settings.homing_dir_mask = int_value; break;
case 24: settings.homing_feed_rate = value; break;
case 25: settings.homing_seek_rate = value; break;
case 26: settings.homing_debounce_delay = int_value; break;
case 27: settings.homing_pulloff = value; break;
case 30: settings.rpm_max = value; spindle_init(); break; // Re-initialize spindle rpm calibration
case 31: settings.rpm_min = value; spindle_init(); break; // Re-initialize spindle rpm calibration
case 32:
if (int_value) { settings.flags |= BITFLAG_LASER_MODE; }
else { settings.flags &= ~BITFLAG_LASER_MODE; }
break;
default:
return(STATUS_INVALID_STATEMENT);
}
}
write_global_settings();
return(STATUS_OK);
}
// Initialize the config subsystem
void settings_init() {
if(!read_global_settings()) {
report_status_message(STATUS_SETTING_READ_FAIL);
settings_restore(SETTINGS_RESTORE_ALL); // Force restore all EEPROM data.
report_grbl_settings();
}
}
// Returns step pin mask according to Grbl internal axis indexing.
uint8_t get_step_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == AXIS_1 ) { return((1<<STEP_BIT(AXIS_1))); }
if ( axis_idx == AXIS_2 ) { return((1<<STEP_BIT(AXIS_2))); }
#if N_AXIS > 3
if ( axis_idx == AXIS_4 ) { return((1<<STEP_BIT(AXIS_4))); }
#endif
#if N_AXIS > 4
if ( axis_idx == AXIS_5 ) { return((1<<STEP_BIT(AXIS_5))); }
#endif
#if N_AXIS > 5
if ( axis_idx == AXIS_6 ) { return((1<<STEP_BIT(AXIS_6))); }
#endif
return((1<<STEP_BIT(AXIS_3)));
}
// Returns direction pin mask according to Grbl internal axis indexing.
uint8_t get_direction_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == AXIS_1 ) { return((1<<DIRECTION_BIT(AXIS_1))); }
if ( axis_idx == AXIS_2 ) { return((1<<DIRECTION_BIT(AXIS_2))); }
#if N_AXIS > 3
if ( axis_idx == AXIS_4 ) { return((1<<DIRECTION_BIT(AXIS_4))); }
#endif
#if N_AXIS > 4
if ( axis_idx == AXIS_5 ) { return((1<<DIRECTION_BIT(AXIS_5))); }
#endif
#if N_AXIS > 5
if ( axis_idx == AXIS_6 ) { return((1<<DIRECTION_BIT(AXIS_6))); }
#endif
return((1<<DIRECTION_BIT(AXIS_3)));
}
// Returns limit pin mask according to Grbl internal axis indexing.
uint8_t get_min_limit_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == AXIS_1 ) { return((1<<MIN_LIMIT_BIT(AXIS_1))); }
if ( axis_idx == AXIS_2 ) { return((1<<MIN_LIMIT_BIT(AXIS_2))); }
#if N_AXIS > 3
if ( axis_idx == AXIS_4 ) { return((1<<MIN_LIMIT_BIT(AXIS_4))); }
#endif
#if N_AXIS > 4
if ( axis_idx == AXIS_5 ) { return((1<<MIN_LIMIT_BIT(AXIS_5))); }
#endif
#if N_AXIS > 5
if ( axis_idx == AXIS_6 ) { return((1<<MIN_LIMIT_BIT(AXIS_6))); }
#endif
return((1<<MIN_LIMIT_BIT(AXIS_3)));
}
uint8_t get_max_limit_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == AXIS_1 ) { return((1<<MAX_LIMIT_BIT(AXIS_1))); }
if ( axis_idx == AXIS_2 ) { return((1<<MAX_LIMIT_BIT(AXIS_2))); }
#if N_AXIS > 3
if ( axis_idx == AXIS_4 ) { return((1<<MAX_LIMIT_BIT(AXIS_4))); }
#endif
#if N_AXIS > 4
if ( axis_idx == AXIS_5 ) { return((1<<MAX_LIMIT_BIT(AXIS_5))); }
#endif
#if N_AXIS > 5
if ( axis_idx == AXIS_6 ) { return((1<<MAX_LIMIT_BIT(AXIS_6))); }
#endif
return((1<<MAX_LIMIT_BIT(AXIS_3)));
}