We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
问题描述 / Problem Description
使用milvus向量库查询时逻辑有误,导致结果不准确:
similarity_search_with_score()
L2
similarity_search_with_relevance_scores
chatchat
langchain_community
langchain_milvus
复现问题的步骤 / Steps to Reproduce
search_doc()即可测试
search_doc()
预期的结果 / Expected Result
返回准确的doc.
实际结果 / Actual Result
环境信息 / Environment Information
附加信息 / Additional Information 添加与问题相关的任何其他信息 / Add any other information related to the issue.
The text was updated successfully, but these errors were encountered:
请问楼主解决了吗?我前段时间也碰到了这个问题,当时我是通过将判断相似度>改成判断距离<完成的,但其实很难决定这个距离的阈值设定到多少合适。今天看了下Faiss的标准化方式,欧拉距离是用1-距离/根号2,langchain那边写的是1-距离/4,但将其改到我的code,报错提示对于multi vectors并不适用,难道是因为我用的L2+HNSW索引?
Sorry, something went wrong.
Successfully merging a pull request may close this issue.
问题描述 / Problem Description
使用milvus向量库查询时逻辑有误,导致结果不准确:
similarity_search_with_score()
方法获取docs,但实际上这个方法返回的不是相似度,如果是L2
返回的实际是distance,应调用similarity_search_with_relevance_scores
方法;chatchat
使用的是langchain_community
中的milvus库,这个库实际上已经废弃且未实现上述方法中的具体逻辑,这边参考了langchain_milvus
的实现;复现问题的步骤 / Steps to Reproduce
search_doc()
即可测试预期的结果 / Expected Result
返回准确的doc.
实际结果 / Actual Result
环境信息 / Environment Information
附加信息 / Additional Information
添加与问题相关的任何其他信息 / Add any other information related to the issue.
The text was updated successfully, but these errors were encountered: