
1

Test Document

for

What’s Next

Version 1.1

Group #: Group Name:Codecrafters
Aditya Kumar
Akkinepally Kruthi
Aman Arya
Apoorva Gupta
Chitwan Goel
Krish Sharma

210060
210088
210106
210179
210295
210392
210530

adityakum21@iitk.ac.in
akruthi21@iitk.ac.in
aarya21@iitk.ac.in

apoorvag21@iitk.ac.in
chitwang21@iitk.ac.in
geetika21@iitk.ac.in
krish21@iitk.ac.in

Paras Sikarwar 210699 sparas21@iitk.ac.in
Talin Gupta
Varun Tokas
Siddharth Kalra

211095
211152
211032

taling21@iitk.ac.in
varuntokas21@iitk.ac.in
siddharthk21@iitk.ac.in

Course: CS253

Mentor TA: Archi Gupta

Date: 30/3/2023

mailto:adityakum21@iitk.ac.in
mailto:akruthi21@iitk.ac.in
mailto:geetika21@iitk.ac.in
mailto:taling21@iitk.ac.in
mailto:varuntokas21@iitk.ac.in
mailto:siddharthk21@iitk.ac.in

Software Design Document for What’s Next Page 2

Contents

CONTENTS II

REVISIONS II

1 INTRODUCTION 4

2 UNIT TESTING 5-22

3 INTEGRATION TESTING 23-49

4 SYSTEM TESTING 50-54

5 CONCLUSION 55-56

APPENDIX A - GROUP LOG 57

Software Design Document for What’s Next Page 3

Revisions
Version Primary Author(s) Description of Version Date Completed

1.1 Varun Tokas
Paras Sikarwar
Kruthi
Geetika Apoorva
Gupta Aditya
Kumar Chitwan
Goel Talin Gupta
Krish Sharma
Siddharth Kalra
Aman Arya

First draft 01/04/2023

Software Design Document for Codecrafters Page 4

1 Introduction
Test Strategy:
We are using Manual testing to test our software.

Testing period:
We have done unit testing during the making of the website, after the completion of every
unit.
System testing of all the units was done once again after all the units and their changes
were completed.

Testers:
Developers were itself the testers

Coverage criteria:
We mainly used decision coverage(which is a type of functional coverage) to test this
software.
Have you used any tool for testing?

Tools:
We used Thunder Client to test our software. Thunder Client is a popular HTTP client
extension for Visual Studio Code that allows developers to test APIs and web services
directly from their code editor. It’s advantages include:

● Ease of use: Thunder Client has a user-friendly interface that makes it easy for
developers to quickly set up and send requests without having to deal with complex
configurations.

● Integration with Visual Studio Code: Thunder Client integrates seamlessly with
Visual Studio Code, allowing developers to switch between coding and testing
without leaving the code editor.

● Advanced features: Thunder Client offers several advanced features such as
automatic cookie management, request history, and code snippets that help
developers save time and increase productivity.

● Free and open source: Thunder Client is free and open source, which means that
developers can use it without any licensing fees and contribute to its development.

Software Design Document for Codecrafters 5

2 Unit Testing
1. Sign-up-

Check the functioning of signup functionality using ThunderClient.

Unit Details: Signup (routes/auth.js) generateotp, createuser
Test Owner: Geetika and Varun Tokas
Test Date: 16-03-2023
Test Results:

1)generateotp: Generating otp if the user with given email-id doesn’t

2)createuser: gives an authtoken

2. Login-
Unit Details: login(routes/auth.js) login, getuser
Test Owner: Geetika and Varun Tokas
Test Date: 16-03-2023
Test Results:

Software Design Document for Codecrafters 6

1)Login:Works fine when the id and password is correct(generates auth-token), otherwise
returns error.

2)Wrong password:

3)getuser: takes auth token and gives details of the user

if the user already exists then already_exists is true in generateotp

Software Design Document for Codecrafters 7

Structural Coverage:
● We did Decision coverage. We covered cases of user already exists, wrong

password, authtoken generation

3. View events by the user-
Checked the functioning of allevents functionality using ThunderClient.

Unit Details: homepg/allevents(GET)
Test Owner: Chitwan and Kruthi
Test Date: 16-03-2023
Test Results:
1.)Display all the events added till then-

Structural Coverage:
All the cases covered in this testing:

● Called all events url and obtained all the events seen by the user which is all the
events added till then.

4. Add Events-
Check the functioning of Add Events functionality using ThunderClient.

Unit Details: events/addevent(POST)
Test Owner: Varun Tokas and Geetika

Software Design Document for Codecrafters 8

Test Date: 03/25/2023 - 03/25/2023
Test Results: Checked clash algorithm and basic requests
Structural Coverage(Decision): events not correct in their start and end date covered,
empty input case covered, and no duplicate clashes must occur (same event appearing
twice in clashes) case checked, non clashing input covered. We have covered all types of
clashes(5 different types)
Additional Comments: Basic Input

Empty Input

Software Design Document for Codecrafters 9

Non Clashing Input

Various test cases for clashing input :

1.Start time of added event between start and end time of already added event

Software Design Document for Codecrafters
10

2.End time of added event between start and end time of already added event

3. Both events are at exact same time

Software Design Document for Codecrafters
11

4.Start time of already added event between the start and end time of event to be
added

5.End time of already added event between the start and end time of event to be
added

Software Design Document for Codecrafters
12

5. Delete events -
Checking the functionality of deleting an event using ThunderClient

Unit Details: Event, deleteevent(DELETE)
Test Owner: Aditya and Krish Sharma
Test Date: 03/25/2023 - 03/25/2023
Test Result:
Case 1: If the admin is logged in:

If the admin tries to delete his own event
Expected: Event deleted from database
Response: HTTP_200_OK

If the admin tries to delete other admin’s event
Expected: Error: Not allowed
Response: HTTP_401_Unauthorize

Software Design Document for Codecrafters
13

If the admin tries to delete an event that does not exists
Expected: Not Found
Result: HTTP_404_Not_Found

Case 2: If the user is not logged in or tries to delete using the wrong auth-token.

Structural Coverage : Decision Coverage. Covered cases of user not logged in, when the
user tries to delete other user’s events, when the user tries to delete his own event

6. Edit events-

Software Design Document for Codecrafters
14

Check the functioning of update events functionality using ThunderClient.
Unit Details: updateevents(routes/event.js) (PUT)
Test Owner: Kruthi and Chitwan
Test Date: 03/25/2023 - 03/25/2023

Test Results:
1)Enter a wrong authorization token and check if an error is being displayed.

2)Tried to edit the title of one of the events added by the corresponding user-

Software Design Document for Codecrafters
15

3)Tried to edit the title and title description of one of the events added by the
corresponding user-

Structural Coverage: (Decision coverage)
All the cases covered in this testing:

Software Design Document for Codecrafters
16

● Entered a wrong authorization token.
● Changing one of the components of one of the events added by the corresponding

user.
● Changing more than one component(simultaneously) of one of the events added by

the corresponding user.

7. See Special Requests
Unit Details: routes/superadmin.js seerequests(GET)
Test Owner: Aditya Kumar and Siddharth Kalra
Test Date: 25-03-2023
Test Result:

Expected Result: All requests for special events will be returned to the user.
Response: HTTP_200_OK
Result: An array of all the events for which reqsp = true is returned. (reqsp means
requested for special event)

Structural Coverage: Statement coverage was used.

8. Special Request accepted
Unit Details: routes/superadmin.js approveevent(PUT)
Test Owner: Aditya Kumar and Krish Sharma
Test Date: 25-03-2023

Software Design Document for Codecrafters
17

Test Result:
Case -1 - The event whose request was approved exists.
Expected Result - The event was approved to be special
Response - HTTP_200_OK
Result - The event’s isspecial field was returned to be true.

Case - 2 The event whose request was approved does not exist
Expected result - The event does not exists
Response - HTTP_404_Not_Found
Result - Not Found

Structural Coverage: Decision coverage was used

9. Special Request denied -
Unit Details: routes/superadmin.js denyevent(PUT)
Test Owner: Aditya Kumar and Siddharth Kalra
Test Date: 25-03-2023

Software Design Document for Codecrafters
18

Test Result:
Case -1 - The event whose request was denied exists.
Expected Result - The event was denied to be special
Response - HTTP_200_OK

Case - 2 The event whose request was denied does not exist
Expected result - The event does not exists
Response - HTTP_404_Not_Found
Result - Not Found

Result - The event’s isspecial field was returned to be false.

Result: An array of all the events for which reqsp = true is returned. (reqsp means
requested for special event)

Structural Coverage: Branch Coverage was used.

9. Password is encrypted
Check that password is indeed encrypted

Software Design Document for Codecrafters
19

Unit Details: routes/auth.js createuser (POST)
Test Owner: Apoorva Gupta and Paras Sikarwar
Test Date: 25-03-2023
Test Results: Password stored in database is not the same as that entered by the us
Statement Coverage has been used.

10. Fetching all events
Unit Details : routes/events.js fetchallevents (GET)
Test Owner: Apoorva Gupta and Chitwan Goel
Test Date: 25-03-2023
Test Results: admin is able to view all its events

Software Design Document for Codecrafters
20

Software Design Document for Codecrafters
21

Structural Coverage :We have used Decision coverage. Events will be shown only if the
user has valid auth-token (case of invalid also covered)

11. View Liked Events
Unit Details: routes/generaluser.js showlikedevents (GET)
Test Owner: Talin Gupta
Test Date: 25-03-2023
Test Results: user is able to view all his/her liked events
Structural Coverage: (Decision Coverage) Covered cases where user is logged in as
well as not logged in
Additional Comments: All liked events are visible, in sorted order of time of happening.

Software Design Document for Codecrafters
22

In case user isn’t logged in, it will give error:

12. Liking an event
Unit Details: routes/generaluser.js likeevent (POST)
Test Owner: Talin Gupta
Test Date: 25-03-2023
Test Results: user is able to like an event
Structural Coverage (Decision Coverage): Covered cases where event id exist and not
exists
Additional Comments: The msg indicates the text on button to be displayed after clicking,
in this case it should be Dislike

In case event id doesn't exist, internal server error will be given.

Software Design Document for Codecrafters
23

13. Dislike an event
Unit Details: routes/generaluser.js likeevent (POST)
Test Owner: Talin Gupta, Siddharth Kalra
Test Date: 25-03-2023
Test Results: user is able to like an event
Structural Coverage: Decision Coverage : Covered cases where event id exist and not
exists

Additional Comments: Api is the same(likeevent) but serves different purpose here. The
msg here, as expected is “LIKE”

Software Design Document for Codecrafters
24

3 Integration Testing
1. Home Page
Several api’s were integrated with the frontend of the dashboard and they are
fetchallevents, addevent, deleteevent and updateevent.The fetchallevents api was
found to be correctly working as the fronted was showing the correct details of all the
events added by an admin on his dashboard . Upon the integration of the frontend
and backend components of dashboard every functionality was found to be working
properly and that too within the consistency of the requirements.

Module Details: Integrated the frontend of dashboard and multiplie apis such as
addevent,fetch all events, updateevent,deleteevent,etc.
Test Owner: Krish and Apoorva
Test Date: 25/03/2023
Test Results: In this test we successfully showcased that the “event details” button is
working properly. Also, the sorting functionality is working correctly on each column i.e the
list of event is getting sorted according to start time, end time , organizers and like count.
The export functionality is working properly i.e the schedule can be downloaded as a .csv
file.
Test 1: event details working properly i.e description of the event is popping up by clicking
on the event details button.

Test 2: Sorting functionality is working correctly

Software Design Document for Codecrafters
25

2.1 Sorting according to title

2.2 Sorting according to start time

2.3 Sorting according to end time

Software Design Document for Codecrafters
26

2.4 Sorting according to organizers

2.5 Sorting according to like counts

Software Design Document for Codecrafters
27

Test 3: Export functionality working properly that is the correct schedule is getting
downloaded.

Software Design Document for Codecrafters
28

Software Design Document for Codecrafters
29

2. Like and show liked events
Module Details: In this test we tested the implementation of api’s such as
showlikedevents and likeevent on the frontend of this component.
Test Owner: Krish and Aman
Test Date: 25/03/2023
Test Results: In this test we successfully showcased that the events like count were
working correctly, there were no false increments in the likes of the event and the correct
number of likes were also to be displayed correctly. Also, on dislike, the event gets
disliked. Apart from this, all other functionalities such as displaying time start and end time
, and the details of the organisers which were stored in the database were successfully
fetched by the api’s and displayed correctly on the frontend.

Liked events on dashboard :

Like an event :

Software Design Document for Codecrafters
30

Test case: Like button of an event clicked

Test result: Like count of that event and only that event is increased, and the like button is
activated and the event liked is also shown on dashboard.

Software Design Document for Codecrafters
31

Test case: Liked event is disliked by clicking on the like button again:

Test result: The event’s like count is decreased by one, like button is restored to its
original state and the event is removed from the “Liked events” in user dashboard.

Test case : Multiple users liking a single event while logged in
Test result : Like of one user was shown to other user only on manual reloading the page.

Test case : Liking an event when a filter was added
Test result : Like works fine but on automatic reloading of page the filter gets removed.

Software Design Document for Codecrafters
32

3. Login and Signup
Module Details: In this we tested the different login (admin and non admin) and
signup+otp verification through various api calls including ‘generate otp’,’createuser’,’login’
as well as the frontend for dashboard based on different logins
Test Owner: Talin
Test Date: 25/03/2023
Test Results: In this test we scrutinized the integration of the backend and frontend
components of Signup and Login functionality of our web application . The backend was
found to be correctly delivering with consistency . Here we are integrating the Login api ,
createuser api and generateotp api with the frontend. The integration was found to be
successful, users were able to generate otps while signup and the frontend was able to
send data to the database with the help of backend apis to successfully furnish the
functionalities expected from Login and Signup
Signup generates otp requests: 30 seconds break between 2 consecutive otp requests to
avoid spam.

Test : Invalid Credentials(invalid email id or password length < 5)

Result : popup showing invalid credentials appears, and no otp generated

Test case : Email already present:

Software Design Document for Codecrafters
33

Result : Prompt showing user already exists appears

Otp verification : In this we tested the different login (admin and non admin) and
signup+otp verification through various api calls including ‘generateotp’,’createuser’,’login’
as well as the frontend for dashboard based on different logins

Test case : incorrect otp given

Result : prompt showing invalid otp appears

Test case: Otp verification successful

Software Design Document for Codecrafters
34

Result : redirected to Landing page

Test case : login with right credentials

Result : Taken to Landing page

Test case: In case of invalid credentials :

Result : Popup showing invalid credentials, not redirected to landing page

4. Dashboard

Software Design Document for Codecrafters
35

Module Details: Several api’s were integrated with the frontend of the dashboard and they
are fetchallevents, addevent, deleteevent and updateevent.The fetchallevents api was
found to be correctly working as the fronted was showing the correct details of all the
events added by an admin on his dashboard . Upon the integration of the frontend and
backend components of dashboard every functionality was found to be working properly
and that too within the consistency of the requirements.
Test Owner: Talin Gupta and Siddharth Kalra
Test Date: 25/03/2023
Test Results: In this test, we were able to see that the dashboard is being

Pre-assumption : User is already logged in
Test Case : On clicking on Dashboard on the Home page we are taken to the user
Dashboard.

Result : Successful , dashboard appears

Test case : General user is viewing dashboard

Software Design Document for Codecrafters
36

Result : Liked events appear correctly. No option to add events. Your events section is
empty as a general user can't add events.

Test case : Admin is seeing dashboard

Result : Option to add event shows up in dashboard

Software Design Document for Codecrafters
37

4. Event operations
Module Details: Here we tested the working of addition of a new event, deletion and
updation of pre added events by the admin. Frontend and backend integration was tested,
as well as various apis working well.
Test Owner: Kruthi and Siddharth Kalra
Test Date: 30/03/2023
Test Results:
Our website What’s next allows the admins to add, edit or delete an event by going into
their dashboard. While adding a new event, incomplete credentials (providing a link for the
poster or image being optional) or invalid start and end times leads to not being able to
add that event. Also while adding an event all the feasible clashes with respect to the time
of the event will be shown to the corresponding admin using a pop up. All the events
added by the user can be found at the bottom of the dashboard page, below the Add event
functionality. The title, description, tag, dates, everything can be edited in an event.

1)Adding an event-

Software Design Document for Codecrafters
38

● Incomplete credentials- The ‘Add events’ button remains inaccessible-

Software Design Document for Codecrafters
39

● Test case Invalid start and end times- A pop up warning appears requesting the
entry of valid time.

● Clash detector- A pop up appears warning the admin about the events(s) in the
same date and time slot.
Clash detected-

Software Design Document for Codecrafters
40

2)Updating an event-

Software Design Document for Codecrafters
41

● Location of ‘your events’-

Software Design Document for Codecrafters
42

● Now clicking the Edit button of any of the events-

Software Design Document for Codecrafters
43

● Editing the description and tag of the event-

Software Design Document for Codecrafters
44

● The edited event looks like-

3)Deleting an event-
● Can be done by clicking the delete button on the event box-

● Now after deleting the event ‘Tired’, ‘Your events’ looks like-

Software Design Document for Codecrafters
45

5. Filter Events
Module Details: In this test we tested that the events get filtered according to the filters we
apply. The scope of this testing includes filtering events based on various criteria, including
title, start time, end time, actions, organizer, like and like count.
Test Owner: Varun Tokas and Apoorva Gupta
Test Date: 29/03/2023

Test Case 1: Filtering events by Title
Objective: To verify that the system filters events based on the title
Input: we apply the filter Title with operator contains and value of “hap”
Expected output: we should get all events that have “hap” in their Title.

Software Design Document for Codecrafters
46

Results: we are getting all the events filtered that have “hap” in their title.

Test Case 2: Filter events by start time
Objective: To verify that the system filters events based on start time.
Input:We apply the filter start time with operator contains and value 10.
Expected Output: all the events with start time 10th April gets filtered.

Software Design Document for Codecrafters
47

Results: all the events with start time 10th April gets filtered .
Bugs: a bug is found, while testing the if we give value as 10th instead of 10 , events are
not filtered. Also if we give a string as input value, the events are not filtered.

Software Design Document for Codecrafters
48

Test Case 3:Filter events by end time
Objective: To verify that the system filters events based on end time.
Input:We apply the filter end time with operator contains and value 26.
Expected Output: all the events with end time 26th April gets filtered.

Software Design Document for Codecrafters
49

Results: all the events with end time 26th April gets filtered.
Bugs: a bug is found, while testing the if we give value as 26th instead of 26 , events are
not filtered. Also if we give a string as input value, the events are not filtered.

Software Design Document for Codecrafters
50

Test Case 4: Filter events by organizer.
Objective: To verify that the system filters events based on the organizer
Input: we apply the filter organizer with operator contains and value of “Varun Tokas”
Expected output: we should get all events that are organized by “Varun Tokas”

Results: all the events with the organizer “Varun Tokas” gets filtered.

Software Design Document for Codecrafters
51

System Testing

System testing is a type of software testing that is conducted to evaluate the complete
system or software application as a whole. It is performed to ensure that the system
meets the specified requirements and performs as intended. The objective of system
testing is to validate and verify the software product under test and ensure that it is free
from defects.The first step in defining a system testing strategy is to determine the
objectives of the testing. . In this case, the objectives include ensuring that the system is
functional, user-friendly, and can handle a high volume of users. The system is being
tested under the “DEVELOPMENT” environment . The Scope of our system testing also
defines the areas of the system that we’ll be testing. In our case it is : Process of adding
events, process of approving the requests of creating a special event, process of liking an
event . There are several types of testing that should be included in the system testing
strategy, such as functional testing, usability testing, performance testing, security testing,
and compatibility testing.It is important to ensure that all of these types of testing are
conducted.

REQUIREMENTS TESTED (AT THE SYSTEM LEVEL)

Software Design Document for Codecrafters
52

1. Requirement : Adding an event from admin’s side and
viewing it from the perspective of an user

This involved testing both the frontend and the backend together to test whether
they fulfilled the requirements. We acted as a general user and tried to like an event
and view detailed descriptions of an event . All the features involved were tested
from the frontend. The results were then analyzed for correctness. For this, we
populated the hosted database with events data. As stated before the testing ran in
parallel on multiple fronts, so the database was already populated as part of other
testing routines.

Test Owner: Aman Arya and Paras Sikarwar
Test Date: 30/03/2023
Test Results: As a simulated admin, we attempted to use the functionalities as
claimed in the SRS. This was done using the User Interface hosted on an actual
server. The functionalities were carried out successfully.

2. Requirement : The system will help the admin to detect
clashes of any sort

This test involved both the frontend and the backend as well. Multiple testers acted as
admins to add events. They added an event with its description such as what is the event
about and then they provided the start and end time for the event. The various test criteria
used in Unit Testing - 2.3 were rigorously performed here as well owing to the large number
of checks. The system successfully showed clashes if they were present in any scenario.

Test Owner: Aman Arya and Siddharth Kalra
Date: 30/03/2023
Test Results: The system was flawlessly able to detect clashes among events. Owing to
rigorous unit testing during development of each and every API, almost no bugs were
reported.

3. Requirement : Requesting an event as a special event

Software Design Document for Codecrafters
53

This test involved both the frontend and the backend as well. Multiple testers logged in as
simulated admins.Operations such as adding an event and requesting them as a special
event were performed by the simulated admins. All the implemented APIs related to the
Special Event Request were tested here.

Test Owner: Aman Arya and Paras Sikarwar
Test Date: 30/03/2023
Test Results: The tests were successful. Again, owing to rigorous unit testing, the bugs
found at this stage were minimal.

4. Requirement:General user can filter and sort the events
according to its interest

This test involved the frontend , we acted as general users who can see the events
according to their own interest.We sorted the events according to the all functionalities,
like Title, start time, end time, tags, organisers, like count etc.

Test Owner: Geetika and Aditya
Test Date: 2/04/2023
Test Results: The tests were successful. Again, owing to rigorous unit testing, the bugs
found at this stage were minimal.

5. Requirement: General user can view the events filtered according to the
categories

This test involved the frontend , we acted as general users who can see the events
according to their own interest.We filtered the events according to the all functionalities,
like Title, start time, end time, tags, organisers, like count etc.

Test Owner: Krish and Apoorva Gupta
Test Date: 2/04/2023
Test Results: The tests were successful. Again, owing to rigorous unit testing, the bugs
found at this stage were minimal.

Software Design Document for Codecrafters
54

6. Requirement: Like and Dislike

This test involved the frontend and backend, we acted as general users who can see the
likes associated with the event. Likes will get updated when we like or dislike.
Test Owner: Geetika and Kruthi
Test Date: 2/04/2023
Test Results: The tests were successful. Again, owing to rigorous unit testing, the bugs
found at this stage were minimal.

7. Non functional Requirements:This includes requirements related to how the
software performs under different load conditions, response times, and scalability.

Test Owner: Geetika and Aman

Test Date: 2/04/2023

Test Results:

1.Performance

· OTP – 7sec

· Login and signup - 3 sec

· Loading of various pages such as homepage, login page, dashboard, etc -2 sec.

· Processing of requests such as adding events, deleting events, and requesting special
events, etc.- 1sec

2. Scalability: The system can handle a maximum of 500-1000 concurrent users on an
average depending on the server we will be using .

3. Usability: The system is very easy and user friendly to use and the website contains
clear instructions and error messages to navigate through the website in a smooth
manner.

Software Design Document for Codecrafters
55

4. Reliability: The system is very robust in its working and the expected down time of the
website is considerably is considerably less and the maintenance is also smooth.

5. Security : Security has been taken care of.

● Password encryption is working correctly.
● Otp generation can be requested only at intervals of 30s so as to prevent spamming
● Tested successfully that superadmin page can only be accessed through a secret

key
● A security bug was found : a person can directly call createuser api and register

himself on the site, without making use of an otp. This is not possible from the
frontend but can be done from backend. Will be corrected in future versions

Software Design Document for Codecrafters
56

Conclusion

4.1 Effectiveness and Exhaustiveness of Testing

The web application involved a large number of APIs, where each was responsible for
fulfilling a particular requirement. Each of these underwent testing to ensure that they were
modifying the database and returning the information when asked to do so.Initial testing
allowed the developers to uncover vulnerabilities and bugs and many of them were
rectified . This process of finding bugs using testing and then improving them ensured that
the application completes the expectations in the SRS. The application’s key features and
services have undergone extensive testing and work robustly providing a pleasant
experience to the user.

4.2 Inadequate Testing Components
As far as the stress testing and testing of some functional requirements were concerned
we did not have adequate resources for carrying out that testing. For example, to stress
test the software, we did not have adequate resources for carrying out that testing as wee
required many devices and signups for them.

1. Multiple User Registration simultaneously
2. Multiple Add events

These are some of the inadequacies that we faced while testing.

4.3 Difficulties Faced
The main difficulties that we faced while testing was the process of simultaneously
developing and testing the software. As we were also improving the software
simultaneously, few test cases were neede to be performed again.

4.4 Improvement in Tesing Process

The testing process can be improved by introducing automated testing to make the
process more streamlined. Independent testers can also be used for black-box testing.

Software Design Document for Codecrafters
57

4.5 Areas requiring improvements

● The security concern that createuser api can be called directly.
● On liking, any applied filters get removed
● Multiple users simultaneously liking an event : need manual reload to see other’s

likes
● Notifications, removing old events, frontend improvements have been made for the

beta version , so we will add those during the Beta Testing phase

Software Design Document for Codecrafters
58

Software Design Document for Codecrafters
59

Appendix A - Group Log

Date Timings Duration Minutes

23/03/23 9am-10:30am 1.5hrs ● Meet to discuss what to be done and written in
the testing doc and user manual.

● Also revisited the implementation doc to ensure
everybody was on the same page.

24/03/23 6pm-10pm 4hrs ● All the team members assembled to do the
unit testing together.

● All the discussion about how to proceed with
the unit testing, and each of its components
was done.

● Each of the parts for the unit testing was
done and the unit testing part in the testing
doc was edited.

25/03/23 2pm-5pm 3hrs ● A meet to finish unit testing.
● Also started integration testing.
● Work distribution for the user manual doc.

29/03/23 8pm-12pm 4hrs ● Meet to continue the integration testing, and
a few other parts of the doc like introduction
etc.

● Also discussed and did a small part of the
system testing.

● Also started writing the user manual.

30/03/23 5:30pm-9pm 3.5hrs ● The meeting was held to finish the
integration testing and started with system
testing.

● Also continued writing of the user manual.

31/03/23 5:30pm-7pm 1.5hrs ● Finished and submitted the user manual.

02/04/23 4pm-7pm 3hrs ● Meet held to finish the Testing doc.
● Also revisited and discussed about all the

components of the testing doc to make sure
everybody was on the same page.

