-
Notifications
You must be signed in to change notification settings - Fork 20
/
edit_cli.py
136 lines (109 loc) · 5.14 KB
/
edit_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn)
# --------------------------------------------------------
from __future__ import annotations
import os
import math
import random
import sys
from argparse import ArgumentParser
import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
import requests
sys.path.append("./stable_diffusion")
from stable_diffusion.ldm.util import instantiate_from_config
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
cfg_z = einops.repeat(z, "b ... -> (repeat b) ...", repeat=3)
cfg_sigma = einops.repeat(sigma, "b ... -> (repeat b) ...", repeat=3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], cond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_txt_cond \
= self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
return 0.5 * (out_img_cond + out_txt_cond) + \
text_cfg_scale * (out_cond - out_img_cond) + \
image_cfg_scale * (out_cond - out_txt_cond)
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
model = instantiate_from_config(config.model)
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if 'state_dict' in pl_sd:
pl_sd = pl_sd['state_dict']
m, u = model.load_state_dict(pl_sd, strict=False)
print(m, u)
return model
def main():
parser = ArgumentParser()
parser.add_argument("--resolution", default=512, type=int)
parser.add_argument("--steps", default=100, type=int)
parser.add_argument("--config", default="configs/instruct_diffusion.yaml", type=str)
parser.add_argument("--ckpt", default="checkpoints/v1-5-pruned-emaonly-adaption-task.ckpt", type=str)
parser.add_argument("--vae-ckpt", default=None, type=str)
parser.add_argument("--input", required=True, type=str)
parser.add_argument("--outdir", default="logs", type=str)
parser.add_argument("--edit", required=True, type=str)
parser.add_argument("--cfg-text", default=5.0, type=float)
parser.add_argument("--cfg-image", default=1.25, type=float)
parser.add_argument("--seed", type=int)
args = parser.parse_args()
config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval().cuda()
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])
seed = random.randint(0, 100000) if args.seed is None else args.seed
if args.input.startswith("http"):
input_image = Image.open(requests.get(args.input, stream=True).raw).convert("RGB")
else:
input_image = Image.open(args.input).convert("RGB")
width, height = input_image.size
factor = args.resolution / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width_resize = int((width * factor) // 64) * 64
height_resize = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width_resize, height_resize), method=Image.Resampling.LANCZOS)
output_dir = args.outdir
os.makedirs(output_dir, exist_ok=True)
with torch.no_grad(), autocast("cuda"):
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])]
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
input_image = rearrange(input_image, "h w c -> 1 c h w").to(next(model.parameters()).device)
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
uncond = {}
uncond["c_crossattn"] = [null_token]
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
sigmas = model_wrap.get_sigmas(args.steps)
extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": args.cfg_text,
"image_cfg_scale": args.cfg_image,
}
torch.manual_seed(seed)
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
x = 255.0 * rearrange(x, "1 c h w -> h w c")
print(x.shape)
edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
edited_image = ImageOps.fit(edited_image, (width, height), method=Image.Resampling.LANCZOS)
edited_image.save(output_dir+'/output_'+args.input.split('/')[-1].split('.')[0]+'_seed'+str(seed)+'.jpg')
if __name__ == "__main__":
main()