Skip to content

Latest commit

 

History

History

gag

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

3D Group Activity Generation

We provide the 3D group activity dataset, M3Act3D, as well as relevant supporting scripts for data visualization, MDM+IFormer baseline, and evaluation.

Requirements

  • Python 3.9
  • FFMPEG

Install packages:

pip install -r requirements.txt

Preparation

  1. Prepare 3D dataset:

    • Download M3Act3D dataset and put all *.h5 files under current directory (gag/).
  2. Download model checkpoints: (TBD)

M3Act3D Dataset

The h5 data contains simulations of all 6 group activities. The length of each simulation clip is 150 frames, in 30 FPS.

To load the motions given a h5file and the clip index (idx), use the following code snippet:

import h5py

with h5py.File(path_to_h5_file, "r") as h5:
    keys = list(h5.keys())
    idx = 0  # ID of simulation clips

    rot6d = h5[keys[idx]]["6d_rotations"][:]  # 6d rotation representation
    # shape: (150, num_people, num_joints, 6)

    quat = h5[keys[idx]]["quaternions"][:]  # quaternions representation
    # shape: (150, num_people, num_joints, 4)

    wpos = h5[keys[idx]]["w_positions"][:]  # world-space positions
    # shape: (150, num_people, num_joints, 3)

    rot6d = h5[keys[idx]]["bone_lengths"][:]  # bone lengths
    # shape: (num_people, num_bones)

    group_id = h5[keys[idx]]["group_id"][()]  # group class (int)
    group_name = h5[keys[idx]]["group_name"][()]  # group name (str)

    action_id = h5[keys[idx]]["action_id"][:]  # action classes
    # shape: (150, num_people)

    ACTIONS = { 0: 'Idle',
                1: 'Walk',
                2: 'Text',
                3: 'Talk',
                4: 'Wave',
                5: 'Point',
                6: 'Dance',
                7: 'Run',
                8: 'Sit',
                9: 'Fight',
                10: 'Box',
                11: 'Salute',
                12: 'Handshake',
                }

Stick Figure Visualization

python skeleton_visualize.py

Resulting videos will be saved to results/ folder.

SMPL Visualization

TBD

Inference

TBD

Training

TBD