This repository has been archived by the owner on Apr 11, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 170
/
keras_models.py
293 lines (232 loc) · 12.2 KB
/
keras_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from __future__ import print_function
from abc import abstractmethod
from keras.engine import Input
from keras.layers import merge, Embedding, Dropout, Conv1D, Lambda, LSTM, Dense, concatenate, TimeDistributed
from keras import backend as K
from keras.models import Model
import numpy as np
class LanguageModel:
def __init__(self, config):
self.question = Input(shape=(config['question_len'],), dtype='int32', name='question_base')
self.answer_good = Input(shape=(config['answer_len'],), dtype='int32', name='answer_good_base')
self.answer_bad = Input(shape=(config['answer_len'],), dtype='int32', name='answer_bad_base')
self.config = config
self.params = config.get('similarity', dict())
# initialize a bunch of variables that will be set later
self._models = None
self._similarities = None
self._answer = None
self._qa_model = None
self.training_model = None
self.prediction_model = None
def get_answer(self):
if self._answer is None:
self._answer = Input(shape=(self.config['answer_len'],), dtype='int32', name='answer')
return self._answer
@abstractmethod
def build(self):
return
def get_similarity(self):
''' Specify similarity in configuration under 'similarity' -> 'mode'
If a parameter is needed for the model, specify it in 'similarity'
Example configuration:
config = {
... other parameters ...
'similarity': {
'mode': 'gesd',
'gamma': 1,
'c': 1,
}
}
cosine: dot(a, b) / sqrt(dot(a, a) * dot(b, b))
polynomial: (gamma * dot(a, b) + c) ^ d
sigmoid: tanh(gamma * dot(a, b) + c)
rbf: exp(-gamma * l2_norm(a-b) ^ 2)
euclidean: 1 / (1 + l2_norm(a - b))
exponential: exp(-gamma * l2_norm(a - b))
gesd: euclidean * sigmoid
aesd: (euclidean + sigmoid) / 2
'''
params = self.params
similarity = params['mode']
dot = lambda a, b: K.batch_dot(a, b, axes=1)
l2_norm = lambda a, b: K.sqrt(K.sum(K.square(a - b), axis=1, keepdims=True))
if similarity == 'cosine':
return lambda x: dot(x[0], x[1]) / K.maximum(K.sqrt(dot(x[0], x[0]) * dot(x[1], x[1])), K.epsilon())
elif similarity == 'polynomial':
return lambda x: (params['gamma'] * dot(x[0], x[1]) + params['c']) ** params['d']
elif similarity == 'sigmoid':
return lambda x: K.tanh(params['gamma'] * dot(x[0], x[1]) + params['c'])
elif similarity == 'rbf':
return lambda x: K.exp(-1 * params['gamma'] * l2_norm(x[0], x[1]) ** 2)
elif similarity == 'euclidean':
return lambda x: 1 / (1 + l2_norm(x[0], x[1]))
elif similarity == 'exponential':
return lambda x: K.exp(-1 * params['gamma'] * l2_norm(x[0], x[1]))
elif similarity == 'gesd':
euclidean = lambda x: 1 / (1 + l2_norm(x[0], x[1]))
sigmoid = lambda x: 1 / (1 + K.exp(-1 * params['gamma'] * (dot(x[0], x[1]) + params['c'])))
return lambda x: euclidean(x) * sigmoid(x)
elif similarity == 'aesd':
euclidean = lambda x: 0.5 / (1 + l2_norm(x[0], x[1]))
sigmoid = lambda x: 0.5 / (1 + K.exp(-1 * params['gamma'] * (dot(x[0], x[1]) + params['c'])))
return lambda x: euclidean(x) + sigmoid(x)
else:
raise Exception('Invalid similarity: {}'.format(similarity))
def get_qa_model(self):
if self._models is None:
self._models = self.build()
if self._qa_model is None:
question_output, answer_output = self._models
dropout = Dropout(self.params.get('dropout', 0.2))
similarity = self.get_similarity()
# qa_model = merge([dropout(question_output), dropout(answer_output)],
# mode=similarity, output_shape=lambda _: (None, 1))
qa_model = Lambda(similarity, output_shape=lambda _: (None, 1))([dropout(question_output),
dropout(answer_output)])
self._qa_model = Model(inputs=[self.question, self.get_answer()], outputs=qa_model, name='qa_model')
return self._qa_model
def compile(self, optimizer, **kwargs):
qa_model = self.get_qa_model()
good_similarity = qa_model([self.question, self.answer_good])
bad_similarity = qa_model([self.question, self.answer_bad])
# loss = merge([good_similarity, bad_similarity],
# mode=lambda x: K.relu(self.config['margin'] - x[0] + x[1]),
# output_shape=lambda x: x[0])
loss = Lambda(lambda x: K.relu(self.config['margin'] - x[0] + x[1]),
output_shape=lambda x: x[0])([good_similarity, bad_similarity])
self.prediction_model = Model(inputs=[self.question, self.answer_good], outputs=good_similarity,
name='prediction_model')
self.prediction_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer=optimizer, **kwargs)
self.training_model = Model(inputs=[self.question, self.answer_good, self.answer_bad], outputs=loss,
name='training_model')
self.training_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer=optimizer, **kwargs)
def fit(self, x, **kwargs):
assert self.training_model is not None, 'Must compile the model before fitting data'
y = np.zeros(shape=(x[0].shape[0],)) # doesn't get used
return self.training_model.fit(x, y, **kwargs)
def predict(self, x):
assert self.prediction_model is not None and isinstance(self.prediction_model, Model)
return self.prediction_model.predict_on_batch(x)
def save_weights(self, file_name, **kwargs):
assert self.prediction_model is not None, 'Must compile the model before saving weights'
self.prediction_model.save_weights(file_name, **kwargs)
def load_weights(self, file_name, **kwargs):
assert self.prediction_model is not None, 'Must compile the model loading weights'
self.prediction_model.load_weights(file_name, **kwargs)
class EmbeddingModel(LanguageModel):
def build(self):
question = self.question
answer = self.get_answer()
# add embedding layers
weights = np.load(self.config['initial_embed_weights'])
embedding = Embedding(input_dim=self.config['n_words'],
output_dim=weights.shape[1],
mask_zero=True,
# dropout=0.2,
weights=[weights])
question_embedding = embedding(question)
answer_embedding = embedding(answer)
# maxpooling
maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))
maxpool.supports_masking = True
question_pool = maxpool(question_embedding)
answer_pool = maxpool(answer_embedding)
return question_pool, answer_pool
class ConvolutionModel(LanguageModel):
def build(self):
assert self.config['question_len'] == self.config['answer_len']
question = self.question
answer = self.get_answer()
# add embedding layers
weights = np.load(self.config['initial_embed_weights'])
embedding = Embedding(input_dim=self.config['n_words'],
output_dim=weights.shape[1],
weights=[weights])
question_embedding = embedding(question)
answer_embedding = embedding(answer)
hidden_layer = TimeDistributed(Dense(200, activation='tanh'))
question_hl = hidden_layer(question_embedding)
answer_hl = hidden_layer(answer_embedding)
# cnn
cnns = [Conv1D(kernel_size=kernel_size,
filters=1000,
activation='tanh',
padding='same') for kernel_size in [2, 3, 5, 7]]
# question_cnn = merge([cnn(question_embedding) for cnn in cnns], mode='concat')
question_cnn = concatenate([cnn(question_hl) for cnn in cnns], axis=-1)
# answer_cnn = merge([cnn(answer_embedding) for cnn in cnns], mode='concat')
answer_cnn = concatenate([cnn(answer_hl) for cnn in cnns], axis=-1)
# maxpooling
maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))
maxpool.supports_masking = True
# enc = Dense(100, activation='tanh')
# question_pool = enc(maxpool(question_cnn))
# answer_pool = enc(maxpool(answer_cnn))
question_pool = maxpool(question_cnn)
answer_pool = maxpool(answer_cnn)
return question_pool, answer_pool
class ConvolutionalLSTM(LanguageModel):
def build(self):
question = self.question
answer = self.get_answer()
# add embedding layers
weights = np.load(self.config['initial_embed_weights'])
embedding = Embedding(input_dim=self.config['n_words'],
output_dim=weights.shape[1],
weights=[weights])
question_embedding = embedding(question)
answer_embedding = embedding(answer)
f_rnn = LSTM(141, return_sequences=True, implementation=1)
b_rnn = LSTM(141, return_sequences=True, implementation=1, go_backwards=True)
qf_rnn = f_rnn(question_embedding)
qb_rnn = b_rnn(question_embedding)
# question_pool = merge([qf_rnn, qb_rnn], mode='concat', concat_axis=-1)
question_pool = concatenate([qf_rnn, qb_rnn], axis=-1)
af_rnn = f_rnn(answer_embedding)
ab_rnn = b_rnn(answer_embedding)
# answer_pool = merge([af_rnn, ab_rnn], mode='concat', concat_axis=-1)
answer_pool = concatenate([af_rnn, ab_rnn], axis=-1)
# cnn
cnns = [Conv1D(kernel_size=kernel_size,
filters=500,
activation='tanh',
padding='same') for kernel_size in [1, 2, 3, 5]]
# question_cnn = merge([cnn(question_pool) for cnn in cnns], mode='concat')
question_cnn = concatenate([cnn(question_pool) for cnn in cnns], axis=-1)
# answer_cnn = merge([cnn(answer_pool) for cnn in cnns], mode='concat')
answer_cnn = concatenate([cnn(answer_pool) for cnn in cnns], axis=-1)
maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))
maxpool.supports_masking = True
question_pool = maxpool(question_cnn)
answer_pool = maxpool(answer_cnn)
return question_pool, answer_pool
class AttentionModel(LanguageModel):
def build(self):
question = self.question
answer = self.get_answer()
# add embedding layers
weights = np.load(self.config['initial_embed_weights'])
embedding = Embedding(input_dim=self.config['n_words'],
output_dim=weights.shape[1],
# mask_zero=True,
weights=[weights])
question_embedding = embedding(question)
answer_embedding = embedding(answer)
# question rnn part
f_rnn = LSTM(141, return_sequences=True, consume_less='mem')
b_rnn = LSTM(141, return_sequences=True, consume_less='mem', go_backwards=True)
question_f_rnn = f_rnn(question_embedding)
question_b_rnn = b_rnn(question_embedding)
# maxpooling
maxpool = Lambda(lambda x: K.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))
maxpool.supports_masking = True
question_pool = merge([maxpool(question_f_rnn), maxpool(question_b_rnn)], mode='concat', concat_axis=-1)
# answer rnn part
from attention_lstm import AttentionLSTMWrapper
f_rnn = AttentionLSTMWrapper(f_rnn, question_pool, single_attention_param=True)
b_rnn = AttentionLSTMWrapper(b_rnn, question_pool, single_attention_param=True)
answer_f_rnn = f_rnn(answer_embedding)
answer_b_rnn = b_rnn(answer_embedding)
answer_pool = merge([maxpool(answer_f_rnn), maxpool(answer_b_rnn)], mode='concat', concat_axis=-1)
return question_pool, answer_pool