-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
220 lines (187 loc) · 8.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import traceback
import time
import shutil
import logging
import yaml
import sys
import os
import torch
import numpy as np
import torch.utils.tensorboard as tb
import copy
from runners import *
import os
def str2bool(val):
if isinstance(val, bool):
return val
if val.lower() in ['yes', 'true', 't', 'y']:
return True
elif val.lower() in ['no', 'false', 'f', 'n']:
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--config', type=str, default='cifar10.yml', help='Path to the config file')
parser.add_argument('--seed', type=int, default=1234, help='Random seed')
parser.add_argument('--exp', type=str, default='exp', help='Path for saving running related data.')
parser.add_argument('--doc', type=str, default='ffhq', help='A string for documentation purpose. '
'Will be the name of the log folder.')#cifar10
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='info', help='Verbose level: info | debug | warning | critical')
parser.add_argument('--test', action='store_true', help='Whether to test the model')
parser.add_argument('--sample', action='store_true', help='Whether to produce samples from the model')
parser.add_argument('--fast_fid', action='store_true', help='Whether to do fast fid test')
parser.add_argument('--resume_training', action='store_true', help='Whether to resume training')
parser.add_argument('-i', '--image_folder', type=str, default='cifar10', help="The folder name of samples")
parser.add_argument('--ni', action='store_true', help="No interaction. Suitable for Slurm Job launcher")
parser.add_argument('--gene_source', default=False, type=str2bool, help='whether generate source features')#False
parser.add_argument('--fine_tune', default=False, type=str2bool, help='whether fine tune the pretained model')#False
'''
parser.add_argument('--backSteps', type=int, default=10, help='The number of steps requiring reverse diffusion')
parser.add_argument('--topk', type=int, default=1, help='The nearest k samples around current sample')
parser.add_argument('--h_name', type=str, default=None, help='file name of OT Brenier h')#'./exp/logs/cifar10/ot/h_10000.pt'
parser.add_argument('--source_dir', type=str, default='./exp/image_samples/cifar10/pth/pth/', help='source file directory')
parser.add_argument('--max_iter', type=int, default=10000,help='max iters of train ot')#待调参数
parser.add_argument('--lr_ot', type=float, default=1e-1,help='learning rate of OT')#待调参数
parser.add_argument('--bat_size_sr', type=int, default=10000,help='Size of mini-batch of Monte-Carlo source samples on device')
parser.add_argument('--bat_size_tg', type=int, default=1000,help='Size of mini-batch of Monte-Carlo target samples on device')
parser.add_argument('--angle_thresh', type=float, default=0.7,help='the threshold of the angle between two samples')
'''
args = parser.parse_args()
args.log_path = os.path.join(args.exp, 'logs', args.doc)
# parse config file
with open(os.path.join('configs', args.config), 'r') as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
tb_path = os.path.join(args.exp, 'tensorboard', args.doc)
if not args.test and not args.sample and not args.fast_fid:
if not args.resume_training:
if os.path.exists(args.log_path):
overwrite = False
if args.ni:
overwrite = True
else:
response = input("Folder already exists. Overwrite? (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
shutil.rmtree(args.log_path)
shutil.rmtree(tb_path)
os.makedirs(args.log_path)
if os.path.exists(tb_path):
shutil.rmtree(tb_path)
else:
print("Folder exists. Program halted.")
sys.exit(0)
else:
os.makedirs(args.log_path)
with open(os.path.join(args.log_path, 'config.yml'), 'w') as f:
yaml.dump(new_config, f, default_flow_style=False)
new_config.tb_logger = tb.SummaryWriter(log_dir=tb_path)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log_path, 'stdout.txt'))
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
else:
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
os.makedirs(os.path.join(args.exp, 'image_samples'), exist_ok=True)
args.image_folder = os.path.join(args.exp, 'image_samples', args.image_folder)
if args.sample:
fid_path = os.path.join(args.image_folder, 'fid')
if not os.path.exists(fid_path):
os.makedirs(fid_path)
elif args.fast_fid:
os.makedirs(os.path.join(args.exp, 'fid_samples'), exist_ok=True)
args.image_folder = os.path.join(args.exp, 'fid_samples', args.image_folder)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
overwrite = False
if args.ni:
overwrite = False
else:
response = input("Image folder already exists. \n "
"Type Y to delete and start from an empty folder?\n"
"Type N to overwrite existing folders (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
# add device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(device))
new_config.device = device
new_config.OT.log_path = args.log_path
new_config.OT.image_folder = args.image_folder
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
if args.gene_source:
new_config.sampling.final_only=False
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
logging.info("Writing log file to {}".format(args.log_path))
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
logging.info("Config =")
print(">" * 80)
config_dict = copy.copy(vars(config))
if not args.test and not args.sample and not args.fast_fid:
del config_dict['tb_logger']
#print(yaml.dump(config_dict, default_flow_style=False))
print("<" * 80)
try:
runner = NCSNRunner(args, config)
if args.test:
runner.test()
elif args.sample:
if args.gene_source:
runner.sample(batch_numb=205)
else:
runner.set_sampling_fid(True)
runner.set_sampling_final_only(True)
if args.fine_tune:
runner.fine_tune()
runner.sample()
elif args.fast_fid:
runner.fast_fid()
else:
runner.train()
except:
logging.error(traceback.format_exc())
return 0
if __name__ == '__main__':
sys.exit(main())