-
Notifications
You must be signed in to change notification settings - Fork 0
/
09_04.tex
497 lines (453 loc) · 17.1 KB
/
09_04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
\documentclass[10pt,letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage[intlimits]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ragged2e}
\usepackage[letterpaper, margin=0.5in]{geometry}
\usepackage{graphicx}
\usepackage{cancel}
\usepackage{mathtools}
\usepackage{tabularx}
\usepackage{arydshln}
\usepackage{tensor}
\usepackage{array}
\usepackage{xcolor}
\usepackage[boxed]{algorithm}
\usepackage[noend]{algpseudocode}
\usepackage{listings}
\usepackage{textcomp}
% \usepackage[pdf,tmpdir,singlefile]{graphviz}
\usepackage{mathrsfs}
\usepackage{bbm}
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{enumitem}
\usepackage{arydshln}
\usepackage{relsize}
\usepackage{multicol}
\usepackage{scalerel}
\usepackage{upgreek}
\usetikzlibrary{bayesnet}
\setlist{noitemsep}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Formatting commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\n}{\hfill\break}
\newcommand{\up}{\vspace{-\baselineskip}}
\newcommand{\hangblock}[2]{\par\noindent\settowidth{\hangindent}{\textbf{#1: }}\textbf{#1: }\!\!\!#2}
\newcommand{\lemma}[1]{\hangblock{Lemma}{#1}}
\newcommand{\defn}[1]{\hangblock{Defn}{#1}}
\newcommand{\thm}[1]{\hangblock{Thm}{#1}}
\newcommand{\cor}[1]{\hangblock{Cor}{#1}}
\newcommand{\prop}[1]{\hangblock{Prop}{#1}}
\newcommand{\ex}[1]{\hangblock{Ex}{#1}}
\newcommand{\exer}[1]{\hangblock{Exer}{#1}}
\newcommand{\fact}[1]{\hangblock{Fact}{#1}}
\newcommand{\remark}[1]{\hangblock{Remark}{#1}}
\newcommand{\proven}{\;$\square$\n}
\newcommand{\problem}[1]{\par\noindent{#1}\n}
\newcommand{\problempart}[2]{\par\noindent\indent{}\settowidth{\hangindent}{\textbf{(#1)} \indent{}}\textbf{(#1) }\!\!\!#2\n}
\newcommand{\ptxt}[1]{\textrm{\textnormal{#1}}}
\newcommand{\inlineeq}[1]{\centerline{$\displaystyle #1$}}
\newcommand{\pageline}{\up\par\noindent\rule{\textwidth}{0.1pt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Math commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set Theory
\newcommand{\card}[1]{\left|#1\right|}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\setmid}{\;\middle|\;}
\newcommand{\ps}[1]{\mathcal{P}\left(#1\right)}
\newcommand{\pfinite}[1]{\mathcal{P}^{\ptxt{finite}}\left(#1\right)}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\N}{\naturals}
\newcommand{\integers}{\mathbb{Z}}
\newcommand{\Z}{\integers}
\newcommand{\rationals}{\mathbb{Q}}
\newcommand{\Q}{\rationals}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\R}{\reals}
\newcommand{\complex}{\mathbb{C}}
\newcommand{\C}{\complex}
\newcommand{\halfPlane}{\mathbb{H}}
\let\H\relax
\newcommand{\H}{\halfPlane}
\newcommand{\comp}{^{\complement}}
\DeclareMathOperator{\Hom}{Hom}
\newcommand{\Ind}{\mathbbm{1}}
\newcommand{\cut}{\setminus}
\DeclareMathOperator{\elem}{elem}
% Graph Theory
\let\deg\relax
\DeclareMathOperator{\deg}{deg}
\newcommand{\degp}{\ptxt{deg}^{+}}
\newcommand{\degn}{\ptxt{deg}^{-}}
\newcommand{\precdot}{\mathrel{\ooalign{$\prec$\cr\hidewidth\hbox{$\cdot\mkern0.5mu$}\cr}}}
\newcommand{\succdot}{\mathrel{\ooalign{$\cdot\mkern0.5mu$\cr\hidewidth\hbox{$\succ$}\cr\phantom{$\succ$}}}}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\affdim}{affdim}
% Probability
\newcommand{\parSymbol}{\P}
\newcommand{\Prob}{\mathbb{P}}
\renewcommand{\P}{\Prob}
\newcommand{\Avg}{\mathbb{E}}
\newcommand{\E}{\Avg}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\cov}{cov}
\DeclareMathOperator{\Unif}{Unif}
\DeclareMathOperator{\Binom}{Binom}
\newcommand{\CI}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
% Standard Math
\newcommand{\inv}{^{-1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\ceil}[1]{\left\lceil{}#1\right\rceil{}}
\newcommand{\floor}[1]{\left\lfloor{}#1\right\rfloor{}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\of}{\circ}
\newcommand{\tri}{\triangle}
\newcommand{\inj}{\hookrightarrow}
\newcommand{\surj}{\twoheadrightarrow}
\newcommand{\ndiv}{\nmid}
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\divides}{\mid}
\newcommand{\ndivides}{\nmid}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\sgn}{sgn}
\newcommand{\map}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\to & \!\!\!\!#2\\ #3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\bigsum}[2]{\smashoperator[lr]{\sum_{\scalebox{#1}{$#2$}}}}
\DeclareMathOperator{\gcf}{gcf}
% Linear Algebra
\newcommand{\Id}{\textrm{\textnormal{Id}}}
\newcommand{\im}{\textrm{\textnormal{im}}}
\newcommand{\norm}[1]{\abs{\abs{#1}}}
\newcommand{\tpose}{^{T}\!}
\newcommand{\iprod}[1]{\left<#1\right>}
\newcommand{\giprod}{\iprod{\;\,,\;}}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\trace}{tr}
\newcommand{\chgBasMat}[3]{\!\!\tensor*[_{#1}]{\left[#2\right]}{_{#3}}}
\newcommand{\vecBas}[2]{\tensor*[]{\left[#1\right]}{_{#2}}}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\Mat}{Mat}
\DeclareMathOperator{\vspan}{span}
\DeclareMathOperator{\rank}{rank}
\newcommand{\V}[1]{\vec{#1}}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\compProj}{comp}
\DeclareMathOperator{\row}{row}
\newcommand{\smallPMatrix}[1]{\paren{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\smallBMatrix}[1]{\brack{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}
\newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\dual}{^{*}}
\newcommand{\pinv}{^{\dagger}}
\newcommand{\horizontalMatrixLine}{\ptxt{\rotatebox[origin=c]{-90}{$|$}}}
\DeclareMathOperator{\range}{range}
% Multilinear Algebra
\let\Lsym\L
\let\L\relax
\DeclareMathOperator{\L}{\mathscr{L}}
\DeclareMathOperator{\A}{\mathcal{A}}
\DeclareMathOperator{\Alt}{Alt}
\DeclareMathOperator{\Sym}{Sym}
\newcommand{\ot}{\otimes}
\newcommand{\ox}{\otimes}
\DeclareMathOperator{\asc}{asc}
\DeclareMathOperator{\asSet}{set}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator{\ringA}{\mathring{A}}
% Topology
\newcommand{\closure}[1]{\overline{#1}}
\newcommand{\uball}{\mathcal{U}}
\DeclareMathOperator{\Int}{Int}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Bd}{Bd}
\DeclareMathOperator{\rInt}{rInt}
\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\ah}{ah}
\newcommand{\LargerTau}{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\tau}}}}}
\newcommand{\Tau}{\mathcal{T}}
% Analysis
\DeclareMathOperator{\Graph}{Graph}
\DeclareMathOperator{\epi}{epi}
\DeclareMathOperator{\hypo}{hypo}
\DeclareMathOperator{\supp}{supp}
\newcommand{\lint}[2]{\underset{#1}{\overset{#2}{{\color{black}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\uint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{black}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\alignint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\extint}{\ptxt{ext}\int}
\newcommand{\extalignint}[2]{\ptxt{ext}\alignint{#1}{#2}}
\newcommand{\conv}{\ast}
\newcommand{\pd}[2]{\frac{\partial{}#1}{\partial{}#2}}
\newcommand{\del}{\nabla}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\curl}{curl}
\let\div\relax
\DeclareMathOperator{\div}{div}
\DeclareMathOperator{\vol}{vol}
% Complex Analysis
\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\let\Im\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Res}{Res}
% Abstract Algebra
\DeclareMathOperator{\ord}{ord}
\newcommand{\generated}[1]{\left<#1\right>}
\newcommand{\cycle}[1]{\smallPMatrix{#1}}
\newcommand{\id}{\ptxt{id}}
\newcommand{\iso}{\cong}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\op}{op}
\newcommand{\isom}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\overset{\sim}{\to} & \!\!\!\!#2\\ #3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\acts}{\;\reflectbox{\rotatebox[origin=c]{-90}{$\circlearrowright$}}\;}
\newcommand{\disjunion}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
\DeclareMathOperator{\SO}{SO}
\DeclareMathOperator{\stab}{stab}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\nsubgp}{\vartriangleleft}
\DeclareMathOperator{\notnsubgp}{\ntriangleleft}
\newcommand{\presentation}[2]{\left<#1\;\middle|\;#2\right>}
\DeclareMathOperator{\Char}{char}
\DeclareMathOperator{\fchar}{char}
\DeclareMathOperator{\triv}{triv}
\DeclareMathOperator{\reg}{reg}
\DeclareMathOperator{\std}{std}
\DeclareMathOperator{\Func}{Func}
\DeclareMathOperator{\End}{End}
% Convex Optimization
\let\sectionSymbol\S
\let\S\relax
\newcommand{\S}{\mathbb{S}}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\ones}{\mathbbm{1}}
\newcommand{\minimizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\maximizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\minimizationProblem}[2]{\minimizeOver{}{#1}{#2}}
\newcommand{\maximizationProblem}[2]{\maximizeOver{}{#1}{#2}}
\newcommand{\minimizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\end{array}}
\newcommand{\maximizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\end{array}}
\newcommand{\minimizationUnconstrained}[1]{\minimizeOverUnconstrained{}{#1}}
\newcommand{\maximizationUnconstrained}[1]{\maximizeOverUnconstrained{}{#1}}
\DeclareMathOperator{\argmin}{argmin}
\DeclareMathOperator{\argmax}{argmax}
% Proofs
\newcommand{\st}{s.t.}
\newcommand{\unique}{!}
\newcommand{\iffdef}{\overset{\ptxt{def}}{\Leftrightarrow}}
\newcommand{\eqdef}{\overset{\ptxt{def}}{=}}
\newcommand{\eqVertical}{\rotatebox[origin=c]{90}{=}}
\newcommand{\mapsfrom}{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
\newcommand{\mapsdown}{\rotatebox[origin=c]{-90}{$\mapsto$}\mkern2mu}
\newcommand{\mapsup}{\rotatebox[origin=c]{90}{$\mapsto$}\mkern2mu}
\newcommand{\from}{\!\mathrel{\reflectbox{\ensuremath{\to}}}}
% Brackets
\newcommand{\paren}[1]{\left(#1\right)}
\renewcommand{\brack}[1]{\left[#1\right]}
\renewcommand{\brace}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left<#1\right>}
% Algorithms
\algrenewcommand{\algorithmiccomment}[1]{\hskip 1em \texttt{// #1}}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\newcommand{\algP}{\ptxt{\textbf{P}}}
\newcommand{\algNP}{\ptxt{\textbf{NP}}}
\newcommand{\algNPC}{\ptxt{\textbf{NP-Complete}}}
\newcommand{\algNPH}{\ptxt{\textbf{NP-Hard}}}
\newcommand{\algEXP}{\ptxt{\textbf{EXP}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Other commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\flag}[1]{\textbf{\textcolor{red}{#1}}}
\let\uSym\u
\let\u\relax
\newcommand{\u}[1]{\underline{#1}}
\let\bSym\b
\let\b\relax
\newcommand{\b}[1]{\textbf{#1}}
\let\iSym\i
\let\i\relax
\newcommand{\i}[1]{\textit{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make l's curvy in math environments %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mathcode`l="8000
\begingroup
\makeatletter
\lccode`\~=`\l
\DeclareMathSymbol{\lsb@l}{\mathalpha}{letters}{`l}
\lowercase{\gdef~{\ifnum\the\mathgroup=\m@ne \ell \else \lsb@l \fi}}%
\endgroup
%%%%%%%%%%%%%%%%%%%%%%%%%
% Fix \vdots and \ddots %
%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{letltxmacro}
\LetLtxMacro\orgvdots\vdots
\LetLtxMacro\orgddots\ddots
\makeatletter
\DeclareRobustCommand\vdots{%
\mathpalette\@vdots{}%
}
\newcommand*{\@vdots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\copy2 \vfill\copy2 \vfill\copy2 %
}%
}%
}
\DeclareRobustCommand\ddots{%
\mathinner{%
\mathpalette\@ddots{}%
\mkern\thinmuskip
}%
}
\newcommand*{\@ddots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\hbox{$#1\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
}%
}%
}
\makeatother
\newcommand{\B}{
\begin{tikzpicture}
\filldraw [fill=red, draw=black] (0, 0) rectangle (0.37, 0.45);
\draw [line width=0.5mm, white ] (0.1,0.08) -- (0.1,0.38);
\draw[line width=0.5mm, white ] (0.1, 0.35) .. controls (0.2, 0.35) and (0.4, 0.2625) .. (0.1, 0.225);
\draw[line width=0.5mm, white ] (0.1, 0.225) .. controls (0.2, 0.225) and (0.4, 0.1625) .. (0.1, 0.1);
\end{tikzpicture}
}
\author{Professor Alejandro Uribe-Ahumada\\ \small\i{Transcribed by Thomas Cohn}}
\title{Math 591 Lecture 3}
\date{9/4/20} % Can also use \today
\begin{document}
\maketitle
\setlength\RaggedRightParindent{\parindent}
\RaggedRight
\subsection*{Group Actions}
\defn{
Let $G$ be a group, $X$ a set. A \underline{left action} of $G$ on $X$ is a map
\[
\map{G\times{}X}{X}{(g,x)}{g\cdot{}x}
\]
such that
\begin{enumerate}[topsep=0pt, itemsep=0pt, label=\alph*)]
\item if $e\in{}G$ is the identity, $\forall{}x\in{}X$, $e\cdot{}x=x$
\item $\forall{}g_{1},g_{2}\in{}G$, $\forall{}x\in{}X$, $(g_{1}g_{2})\cdot{}x=g_{1}\cdot(g_{2}\cdot{}x)$.
\end{enumerate}\up\n
}
\par\noindent
In other words, if $\forall{}g\in{}G$, we define the map
\[
\map{L_{g}:X}{X}{x}{g\cdot{}x}
\]
then $L_{e}=I_{X}$ and $L_{g_{1}g_{2}}=L_{g_{1}}\of{}L_{g_{2}}$.\n
\defn{
Given a group action, if $x\in{}X$, the \underline{orbit} of $x$ is the set $G\cdot{}x=\set{y\in{}X\mid{}\exists{}g\in{}G\ptxt{ \st }g\cdot{}x=y}$.\n
}
\lemma{
The orbits partition $X$, i.e., $x\sim{}y$ iff $G\cdot{}x=G\cdot{}y$ is an equivalence relation.\n
}
\par\noindent
Notation: $X/G$ and $G\backslash{}X$ are both valid. We'll stick with $G\backslash{}X$. (This is the quotient space whose points are the orbits of points in $X$.)\n
\defn{
Assume $X$ is a topological space, and the group $G$ acts on $X$ (on the left). The action is \underline{by continuous maps} iff $\forall{}G\in{}G$, $L_{g}:X\to{}X$ is continuous.\n
}
\par\noindent
Observe that $\forall{}g,L_{g}$ is a homeomorphism, because $\exists{}g\inv\in{}G$, so $L_{g\inv}$ is continuous, and $L_{g}\of{}L_{g\inv}=I_{X}=L_{g\inv}\of{}L_{g}$.\n
\lemma{
If $G$ acts by continuous maps, the orbit relation is open.\n
Proof: Let $U\subseteq{}X$ be open. We need to show that saturation $\hat U$ of $U$ is open.\n
\begin{align*}
\hat U & =\set{x\in X\mid \exists y\in{}U\ptxt{ \st{} }x\sim y}\ptxt{ ($\sim$ being the orbit relation)}\\
& =\set{x\in{}X\mid{}\exists{}y\in{}U,g\in{}G\ptxt{ \st{} }y=g\cdot{}x}
\end{align*}
Thus,
\[
\hat{U}=\bigcup_{g\in{}G}g\cdot{}U=\bigcup_{g\in{}G}\set{g\cdot{}x\mid{}x\in{}U}=\bigcup_{g\in{}G}L_{g}(U)
\]
$L_{g}$ is a homeomorphism, so it is an open map, so each $L_{g}(U)$ is open, so $\hat{U}$ is open.\proven
}
\defn{
A \underline{topological group} is a group $G$ with a topology \st{} the maps
\[
\map{G\times{}G}{G}{(g,k)}{gk}\qquad\ptxt{and}\qquad\map{G}{G}{g}{g\inv}
\]
are continuous.\n
}
\par\noindent
Aside: Later on, when we have a manifold, and these maps are smooth, then this is a Lie group.\n
\ex{
$\GL(n,\R)\subseteq\R^{n\times{}n}\cong\R^{n^{2}}$, the set of invertible $n\times{}n$ matrices.\n
In fact, this is an open subset, since it's described by $\GL(n,\R)=\set{M\in\R^{n\times{}n}\mid{}\det M\ne{}0}$, i.e.,\break $\GL(n,\R)=\det\inv(\R\cut\set{0})$. Because $\det$ is a continuous map from $\R^{n\times{}n}$ to $\R$ and $\R\cut\set{0}$ is open, we get that $\GL(n,\R)$ is open.\n
Note that $\GL(n,\R)$ is a topological group, with the induced topology. In fact, any subgroup of a topological group is naturally a topological group with respect to the subspace topology.\n
}
\ex{
$O(n,\R)=\set{g\in\GL(n,\R)\mid{}g\inv=g\tpose}$.\n
$\GL(n,\C)\subseteq\C^{n^{2}}\cong\R^{2n^{2}}$. Note that $\GL(n,\C)\subseteq\GL(2n,\R)$, since $\C\cong\R^{2}$.\n
$U(n)=\set{g\in\GL(n,\C)\mid{}g\inv=\conj{g}\tpose}$.\n
}
\defn{
If $G$ is a topological group acting on a topological space $X$, the action is \underline{continuous} iff $G\times{}X\to{}X$ is a continuous map.\n
}
\lemma{
A continuous action is an action by continuous maps. (I.e. $\forall{}g\in{}G$, $L_{g}:X\to{}X$ is continuous.)\n
}
\ex{
$G=S^{1}=\set{z\in\C:\abs{z}=1}=U(1)$ acts on $S^{2n+1}\subseteq\C^{n+1}$ by $\lambda\in{}S^{1}$, $(z_{1},\ldots,z_{n+1})\in{}S^{2n+1}$,\break $\lambda\cdot(z_{1},\ldots,z_{n+1})=(\lambda{}z_{1},\ldots,\lambda{}z_{n+1})$. This is a continuous action.\n
}
\par\noindent
Question: Suppose $G$ is a topological group acting on $X$. (So the orbit relation is open.) When is $G\backslash{}X$ Hausdorff?\n
Well, this is true iff the graph of the orbit relation is closed.\n
\par\noindent
Define
\[
\star\quad\map{G\times{}X}{X\times{}X}{(g,x)}{(x,g\cdot{}x)}
\]
This is a continuous map, whose image is the graph of the orbit relation.\n
\prop{
If $G$ and $X$ are both compact, and $X$ is Hausdorff, then $G\backslash{}X$ is Hausdorff.\n
Proof: The image of $\star$ is compact, and compact subsets of Hausdorff spaces are closed, so the orbit relation is closed.\proven
}
\ex{
$S^{1}\times{}S^{2n+1}\to{}S^{2n+1}$ as above.\n
Then the proposition implies $\C\P^{n}=S^{1}\backslash{}S^{2n+1}$ is Hausdorff and second-countable.\n
Note: $\C\P^{n}\cong\set{\ptxt{$1$-dimensional subspaces of $\C^{n+1}$}}$.\n
}
\end{document}