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Recognition memory experiments are an important source of empirical constraints for the-
ories of memory. Unfortunately, standard methods for analyzing recognition memory data
have problems that are often severe enough to prevent clear answers being obtained. A key
example is whether longer lists lead to poorer recognition performance. The presence or
absence of such a list-length effect is a critical test of competing item- and context-noise
based theories of interference and bares on whether recognition involves ‘‘recall-like” com-
ponents as dual process theories would contend. However, the issue has remained unre-
solved, in part, because of the weaknesses of the standard analysis. In this paper, we
develop a Bayesian method of analysis and apply it to new data on the list-length effect.
The analysis allows us to find positive evidence in favor of a null list-length effect as pre-
dicted by context noise models. The data also illustrate the importance of the contextual
reinstatement process on recognition performance and show how previous work demon-
strating a list-length effect may have been contaminated by reinstatement confounds. By
contrasting our new method against the standard approach we highlight the advantages
of the Bayesian framework when inferring the values of psychologically meaningful vari-
ables, and in choosing between models representing different theoretical assumptions
about memory.

� 2008 Elsevier Inc. All rights reserved.
In a typical yes/no recognition memory task, subjects
are asked to study a list of items and then decide whether
or not each of a set of test items appeared on the study list.
This task has been a touchstone for understanding episodic
memory (Glanzer & Adams, 1985; Ratcliff, Clark, & Shiffrin,
1990), and has provided important constraint for a series
of memory models (Clark & Gronlund, 1996; Dennis &
Humphreys, 2001; Eich, 1982; Gillund & Shiffrin, 1984;
Hintzman, 1986; Humphreys, Bain, & Pike, 1989; McClel-
land & Chappell, 1998; Murdock, 1982; Shiffrin & Steyvers,
1997). Recently, however, there has been debate concern-
ing the primary source of interference in recognition mem-
ory paradigms. Logically, interference can arise either from
the other items that appear in the study list, or from the
. All rights reserved.

nis).
other contexts in which a test item has appeared, or from
both sources (Humphreys, Wiles, & Dennis, 1994).

A critical empirical test of these competing theoretical
positions involves the presence or absence of list-length
effects. If item noise is the primary source of interference,
recognition should be poorer for longer study lists than for
shorter ones. If context is the primary source of interfer-
ence, changes in the length of the study list should not
change recognition performance. Currently, there is no
consensus on whether or not a list-length effect is
observed empirically, in part, because there are a number
of confounds that could produce artifactual list-length
effects.

The most obvious of these is the retention interval. If
one presents a study list followed immediately by test,
then retention interval will be longer for the long list.
There are two ways in which retention interval can be
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equated. In a retroactive condition, filler activity is added
after the short list and only items from the start of the long
list are tested. In a proactive condition, filler activity is
added before the short list and only items from the end
of the long list are tested.

Using the retroactive design, Schulman (1974) found no
list-length effect in a forced choice test. Bowles and Glan-
zer (1983) did not analyze the retroactive condition sepa-
rately from the proactive condition, but the difference in
the proportion correct between short and long conditions
was small (0.033) Also, in the third experiment of Murnane
and Shiffrin (1991) the effect of length was not significant.
In contrast to previous work, Gronlund and Elam (1994)
did find a significant effect of length using a retroactive de-
sign. In this experiment, intentional instructions were em-
ployed and we will argue below that rehearsal could have
been a factor.

In experiments employing proactive designs, the effects
of length have been more robust. Bowles and Glanzer
(1983) found a difference of 0.068 in the proactive condi-
tion, and overall found a significant effect of length. Under-
wood (1978) used a forced choice test and found an effect
of length, as did Ohrt and Gronlund (1999). Underwood,
citing the stability of word difficulty across list lengths
and the lack of cumulative proactive interference in other
recognition paradigms, argued against the direct involve-
ment of proactive interference in recognition.

Rather, Underwood (1978) suggested that list-length ef-
fects in proactive designs were caused by a lack of attention.
In long lists, subjects must maintain attention throughout
the list. The items tested are those at the end of the list,
which are the ones most likely to be affected by attentional
lapses. In contrast, in short lists all items effectively appear
at the start of the list. In the Bowles and Glanzer (1983)
study, the long list contained 240 words. In the Underwood
(1978) study, the long list contained 80 words and in the
Ohrt and Gronlund (1999) study, the long list contained
82 words. In all three cases, words were presented for
1.5–2.0 s under intentional learning instructions, but with
no specific processing requirements and no way of ensuring
that attention was maintained. Lapses of attention seem
likely under these conditions, particularly in the case of
Ohrt and Gronlund (1999) in which subjects participated
in four 50-min sessions.

A third potential confound is rehearsal. In the retroac-
tive condition, a filler task is introduced between study
and test. If subjects devote any of this time to rehearsing
the studied items then performance in the short list will
be superior to that in the long list both because there is
more time to rehearse the short list and because any re-
hearsal that subjects might engage in under the long list
conditions will be spread across more items and quite
probably be focused on later items that will not be tested.
Both experiments conducted by Gronlund and Elam (1994)
involved intentional conditions, which increases the likeli-
hood of rehearsal.

The fourth potential locus of an artifactual list-length
effect, and the one on which we will focus in this paper,
is contextual reinstatement. Episodic recognition necessar-
ily involves the use of both an item and a context cue
(Humphreys et al., 1994). In the retroactive design, sub-
jects are either tested immediately in the long condition,
or after the filler task in the short condition. After the long
list, as far as the subject is aware, the current context can
be used to initiate retrieval. However, in the case of the
short list the current context focuses on the filler task,
and so the subject is likely to reinstate the context of the
study list so as to isolate the relevant study episode. To
the extend that context drifts during the presentation of
the long list, the end of list context may not be an effica-
cious cue for items that were presented at the start of
the list and hence performance in the long list will suffer.

Controlling for the factors outlined above Dennis and
Humphreys (2001) argued that, for verbal stimuli, context
is the primary source of interference, and presented empir-
ical evidence consistent with the absence of a list-length
effect. Cary and Reder (2003) contested this conclusion,
and presented empirical evidence consistent with a list
length effect.

There were a number of differences between the two
studies that could explain the different results. Cary and
Reder (2003) only analyzed the combined proactive and
retroactive results. As we argue above, list length effects
in proactive designs have typically been larger than in ret-
roactive designs, perhaps because of the effects of atten-
tion as suggested by Underwood (1978). Secondly, Cary
and Reder (2003) employed the remember know proce-
dure which requires subjects to attempt to recall specific
aspects of the study episode. In recall, the existence of a
list-length effect is not disputed, so it is possible that recall
is contaminating the results in a way that did not occur in
the Dennis and Humphreys (2001) experiments, which
used yes/no recognition. Thirdly, Cary and Reder (2003)
employed a much shorter period (2 min) between the
end of the long list and test than did Dennis and Humph-
reys (2001, 8 min). It is possible that this shorter period
was not sufficient to compel subjects to engage in contex-
tual reinstatement in the long condition.

The source of interference is a fundamental aspect of
understanding memory phenomena, and so this debate is
crucial to the development of models of recognition mem-
ory. Unfortunately, the appropriate way to analyze recog-
nition data has been a controversial topic (Banks, 1970;
Lockhart & Murdock, 1970; Snodgrass & Corwin, 1988), be-
cause the methodology that is used standardly has a num-
ber of undesirable properties. These fall into two main
classes: Those related to the application of signal detection
theory (SDT), and those related to the application of stan-
dard methods for statistical inference. In this paper, we ac-
cept the standard SDT assumptions, but develop a Bayesian
framework for understanding recognition memory perfor-
mance that improves how the model can be related to
experimental data. In particular, we tackle both issues of
parameter estimation caused by the standard use of frequ-
entist methods, and issues of model selection and evalua-
tion caused by the standard use of null hypothesis
significance testing (NHST).

We start by describing a new recognition memory
experiment. We outline the method of analysis that would
commonly be used in the recognition literature and, by
applying it to the new data, describe its deficiencies. We
then introduce and apply the Bayesian approach to the
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same data, and contrast its findings to the standard results.
Finally, we relate these findings to our theoretical under-
standing of recognition memory.
Long No Filler

Study Test

Short No Filler

Study Puzzle Test

Long Filler

Study Filler Test

Short Filler

Study Puzzle Filler Test

Fig. 1. The design of the recognition memory experiment. Puzzle activity
was added to equate retention interval.
Experiment

In this experiment, we investigated the impact of con-
textual reinstatement on the list-length effect by manipu-
lating whether additional filler activity was introduced
after the long and short lists.

Method

Subjects
Forty eight Psychology I students from the University of

Adelaide participated in exchange for course credit. The 10
male and 38 female subjects ranged in age from 16 to
42 years (mean = 19.71, standard deviation (SD) = 4.73).
The sample size was equivalent to that in Dennis and
Humphreys’ (2001) study and larger than in Cary and
Reder’s (2003) study.

Design
A 2 � 2 � 2 factorial design was used. The factors were

list length (short or long), condition (filler or no filler activ-
ity), and word frequency (high or low). All comparisons
were within subjects.

Materials
Two hundred and eighty words were selected from the

Sydney Morning Herald Word Database for use in this
experiment. Half of the words were five letters and the rest
were six letters long. Half of the words were of high fre-
quency, defined as occurring 100–200 times per million
words, and the remainder were low frequency words, of
between one and four occurrences per million. The criterion
for each frequency definition was consistent with the study
of Dennis and Humphreys (2001). Each study and test list
comprised an equal number of randomly ordered five and
six letter, and high and low frequency words. Words were
randomly assigned to conditions and no word appeared
twice in the study, with the obvious exception of targets.

Procedure
Upon arrival, subjects were given an overview of the

experiment but were not told that there would be lists of
different lengths or words of different frequency. Prior to
the first study list, the instructions for a sliding tile puzzle
activity were displayed on the screen and subjects com-
pleted a 30-s trial of the puzzle. Four lists were presented
to subjects, two short and two long. As in Cary and Reder’s
(2003) study, short study lists were 20 words long while
long lists were 80 words long. A test list following a short
study list comprised all 20 words that appeared on the
study list as well as 20 distractors. Using the retroactive
design, test lists following long study lists included the first
20 words studied and 20 distractors. In all test lists, half of
both the targets and distractors were high frequency and
half were low frequency. The words in the test lists were
presented in a random order.
Each study-test list combination was randomly as-
signed a different font color (blue, black, red, and green)
for each subject. All words were presented in lower-case
letters in the center of the computer screen on a gray
background.

During study, each word appeared for 3000 ms and
within that time subjects were also required to rate its
pleasantness on a six point Likert scale (1: least pleasant,
6: most pleasant) by clicking on the appropriate button
displayed across the computer screen below the probe
word. Subjects were instructed that if they missed rating
the pleasantness of any word within the allocated time,
they were to move on and rate the next word.

Subjects were given a 3-s warning before the onset of
each test list. Responses in the test lists took the form of
the yes/no recognition paradigm. Words were presented
individually along with two possible response options
‘‘old” and ‘‘new” which appeared as buttons on the com-
puter screen. Subjects were informed that they were to re-
spond ‘‘old” if they recognized the word from the
preceding study list and to respond ‘‘new” if they believed
that to be the first presentation of the word by clicking on
the appropriate button. Words appeared on screen until
such time as the subject responded.

To equate the retention interval for the short and long
lists, all short lists were followed by 3 min of a sliding tile
puzzle activity. Thus the total time elapsed between the
first word of the short list and the test list was equal to
the time between the presentation of the first word on
the long list and the subsequent test list. To encourage con-
textual reinstatement, this experiment included a condi-
tion in which both the short and long lists were followed
by 8 min of sliding tile puzzle filler in addition to the
3 min following the short list (see Fig. 1).

The experiment was counterbalanced for order. Half of
the subjects began with the filler condition while half did
not. Within each of these conditions, half of the subjects
began with the short list and the remainder started by
viewing a long list. To ensure continuity, both the short
and long lists from within the one condition were studied
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Fig. 2. The signal detection theory model of recognition memory.

Table 1
Hit and false-alarm rates calculated under the standard model for each of
the conditions

Hit rate FA rate

Short Long Short Long

High
Filler .83 .81 .30 .31
No filler .81 .80 .21 .21

Low
Filler .87 .86 .15 .15
No filler .88 .84 .10 .12
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one after the other, before the subject studied the lists
from the other condition. All subjects took part in each
condition and there were no missing data.

Results

The yes/no recognition procedure provides two inde-
pendent counts per subject per condition: A hit count
and a false-alarm count. Test items that appear on the
study list are called targets and test items that did not
are called distractors. The hit count is the number of target
items to which the subject responded yes. The false-alarm
count is the number of distractors to which the subject
erroneously responded yes. For a given number of targets
and distractors, these two counts determine correct rejec-
tion and miss counts.

Using these counts, it is straightforward to apply stan-
dard Signal Detection Theory (e.g., Macmillan & Creelman,
1991) to model recognition memory. The model is shown
in Fig. 2. The key assumption is that the evidence the test
item appeared on the study list lies on a uni-dimensional
strength continuum.1 Recognition strengths are drawn
from two separate distributions, one corresponding to tar-
get words and the other corresponding to distractor words.
The distributions are assumed to be Gaussian and have
equal variance (we will discuss unequal variance versions
of the model later in the paper), but the mean strength is
higher for the target words. Decisions are made by com-
paring the recognition strength to a fixed criterion, de-
noted by k, and choosing ‘‘yes” for those words above
criterion, and ‘‘no” for those words below criterion. As
shown in Fig. 2, these stimulus and decision-making
assumptions correspond to predictions about hit, false-
1 The uni-dimensional assumption is not that only one source of
information contributes to the decision. Rather, recognition memory
models that use SDT typically assume that there are a very large number
of sources of evidence that are relevant (Hintzman, 1984; Humphreys et al.,
1989; Murdock, 1982). However, the assumption is that these sources are
condensed to a single value in order to arrive at a decision.
alarm, miss, and correct-rejection rates that can be related
to the experimental data.

The main benefit of the signal detection theory model is
that it provides separate measures of discriminability and
bias. Discriminability is a measure of how distinct target
words are from distractor words, and so corresponds to
how well people perform on the yes/no task. Bias measures
to what extent they more inclined to give ‘‘yes” or ‘‘no”
responses, regardless of their level of performance. There
are a number of ways discriminability and bias can be
measured, which are all just reparameterizations
according to the model in Fig. 2. In this paper, we use the
‘‘d-prime” measure of discriminability, denoted, d, which
is the distance between the means of the target and dis-
tractor distributions.2 We also use the c measure of bias,
which is the signed difference between the criterion k
and the unbiased criterion value at which false alarms
and misses are equally likely. Larger values of d correspond
to better performance on the task. Positive values of c cor-
respond to a bias towards saying ‘‘no,” and so produce
higher miss rates. Negative values of c correspond to a bias
towards saying ‘‘yes,” and so produce higher false-alarm
rates.

We undertook a standard analysis to estimate these
measures of discriminability and bias. This involved, first,
deriving hit and false alarm rates for each subject by divid-
ing their hit and false-alarm counts by, respectively, the
number of targets and distractors. These hit rates, H, and
false-alarm rates, F, were then used to calculate d and c val-
ues, according to the formulae (e.g., Macmillan & Creel-
man, 1991)

d ¼ zðf Þ � zðhÞ; ð1Þ

c ¼ zðhÞ þ zðf Þ
2

: ð2Þ

Hit rates of 1.0 or false-alarm rates of 0.0 imply an infinite
value for the d measure of discriminability. To overcome
this problem, we followed the advice of Snodgrass and Cor-
win (1988), and added 0.5 to the hit and false-alarm counts
and 1 to the target and distractor counts.

Table 1 shows the mean hit and false-alarm rates across
participants as calculated using the above methodology.
Also, the hit and false-alarm counts for each participant
2 Since only the differences between the distributions is important, the
distractor distribution is usually given a mean of zero, and the target
distribution a mean of d.
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are provided in the Appendix to allow readers to calculate
statistics using different methodologies for comparison
purposes.

Two planned comparisons were carried out on the d
data in the filler and no filler conditions separately. Fig. 3
shows the means and 95% confidence intervals for discrim-
inability in the filler, no filler and word frequency compar-
isons. In the filler comparison, where contextual
reinstatement was encouraged after both the short and
long lists, a repeated measures ANOVA yielded a non-sig-
nificant effect of list length on d (Fð1;47Þ ¼ 1:65; p ¼ :21).
Conversely, in the no filler condition, where the contextual
reinstatement control was relaxed, a statistically signifi-
cant effect of list length on d was found
(Fð1;47Þ ¼ 4:44; p ¼ :04;g2

p ¼ :09), suggesting that list
length did have an effect on performance. In the word fre-
quency comparison, a statistically significant effect on d
was found (Fð1;47Þ ¼ 117:98; p < :001;g2

p ¼ :72), with
low frequency words being better discriminated than high
frequency words. This strong effect of word frequency on d
was also found in each of the filler and no filler conditions
(Fð1;47Þ ¼ 88:71; p < :001;g2

p ¼ :65 and Fð1;47Þ ¼ 58:49;
p < :001;g2

p ¼ :55, respectively).
These results indicate no list-length effect when filler

activity was employed, but a list-length effect when the fil-
ler activity was removed. In addition, the results indicate,
consistent with established findings, that low frequency
words were more easily discriminated than high frequency
words. Thus, according to this standard analysis, one
would conclude that contextual reinstatement can induce
a list-length effect and a failure to control for this confound
will lead to artifactual list length findings.

Six inferential problems

In this section, we discuss six problems with the stan-
dard analysis of recognition memory data. We want to
emphasize that these are problems of standard practice,
and we are not claiming all of them are insurmountable
within the frequentist framework for parameter estima-
tion or the null hypothesis significance testing (NHST)
framework for model comparison. Indeed, there are exist-
ing work-arounds in the statistics literature for many of
the analysis problems we consider, and we mention some
at the conclusion of this section.

Our point in raising the inference issues is that, what-
ever is possible in principle, none of the problems we men-
tion is routinely addressed in a satisfactory way in the
recognition memory literature in practice. This is perhaps
because the problems are not well appreciated, or because
many of the required work-arounds are technically chal-
lenging to implement. Indeed, we think it would take con-
siderable statistical sophistication to solve all of the
problems simultaneously in practice using standard ap-
proaches to statistical analysis. In contrast, the Bayesian
approach we develop deals naturally, and in principled
ways, with all the inferential problems. In this sense, our
raising of the inference issues is intended to serve as a
motivation for learning and using the Bayesian approach.

� Problem 1: Evidence in favor of the null. The standard
approach to inference seeks to establish if there is suf-
ficient evidence to suggest that the mean for target
words is different from the mean for distractor words.
This is inappropriate when both the null and alternative
hypotheses have theoretical weight. NHST assumes that
the null hypothesis is true until the data prove other-
wise. In practice, issues of potentially low power ensure
that only significant effects favoring the alternative
hypothesis are considered theoretically useful. This
makes it impossible to find evidence for the theoretical
position that predicts the absence of a list-length effect.
What is needed are models that can directly assess the
evidence in favor of any theoretical position.
� Problem 2: Iterative use. The standard approach cannot

be applied in an iterative way, where current results
are examined before deciding whether to collect addi-
tional data. Because the standard approach does not
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conform to the likelihood principle, the sample size
must be fixed before running the experiment (Wagen-
makers, 2007). This is constraining in cases where
results approach significance, and it is possible only a
few extra subjects would have been required. It is also
wasteful in cases where the effect turns out to be much
larger than expected, and it is necessary to continue
experimentation until the planned sample size is
reached, particularly in the context of research with
special populations. What is needed are models that
permit iterative testing.
� Problem 3: Inference from the majority. The standard

approach attempts to establish if there is a difference
between two means, without regard to the proportion
of subjects contributing to that difference. If enough
subjects are tested, a difference is certain to be found,
no matter how small the proportion of subjects exhibit-
ing an effect. If there are individual differences in recog-
nition memory, a minority of subjects may evidence an
effect, and the standard analysis will infer a general
property of the memory system from these subjects.
What is needed are models that are not unduly influ-
enced by a minority of subjects. A related concern is
the method for excluding subjects from analysis, for
which current practices vary widely. What is needed
are models that are not overly sensitive to exclusion
decisions.
� Problem 4: Small sample sizes. Standard methods of anal-

ysis make assumptions about sampling distributions
that rely on asymptotic results. This means they are
not necessarily valid with small sample sizes. What is
needed are models that are guaranteed to be valid for
any sample size.
� Problem 5: Edge corrections. As explained above, it is

common for estimators of hit and false-alarm rates to
imply infinite measures of d. These estimates require
an ad hoc edge correction, but the correction chosen
can have a large effect on the results. What is needed
are models that do not require edge corrections.
� Problem 6: Capturing sampling variability. The standard

estimators of hit and false-alarm rates fail to account
for the uncertainty in these rates that must exist given
finite data. If a subject has 3 hits from 4 targets, their
hit rate is much less certain than if they have 30 hits
from 40 targets. The standard analysis is insensitive
to the number of data from which hit and false-alarm
rates are estimated. What is needed are models that
are sensitive to uncertainty about hit and false-alarm
rates.

As we acknowledged, several of these issues are well
known in the broader statistics literature, and branches
of standard statistics have been developed to address these
problems. Equivalency tests provide a means of testing if
two means are approximately equal (Wellek, 2003), stop-
ping rules adjust required significance values to avoid tak-
ing advantage of chance if one discontinues an experiment
upon consideration of the already collected data (e.g.,
Armitage, 1958), robust statistics provide values to replace
the mean that are less subject to distortion by outliers (e.g.,
Hampel, Ronchetti, Rousseeuw, & Stahel, 1986), inference
from the majority is possible using mixture models esti-
mated using the expectation maximization algorithm
(Greun & Leisch, 2006), and a variety of exact tests can
be applied when sample sizes are small (e.g., Fisher, 1922).

We emphasize again, however, that these approaches
are rarely employed in the recognition literature. In the
next section, we develop a Bayesian method that addresses
all of the issues automatically within the complete and
coherent framework for inference offered by probability
theory.
A Bayesian approach

In this section, we develop a Bayesian approach that
overcomes the problems with the standard analysis out-
lined above.3 We focus first on the parameter estimation
problem of inferring discriminability and bias measures
from experimental data, and then move to the model selec-
tion problem of comparing competing list length and no
list length accounts.

Parameter estimation

Bayesian inference represents what is known and un-
known about the variables of interest using probability dis-
tributions. These distributions provide complete
representations of uncertainty, and automatically address
the parameter estimation problems 4–6. That is, using
the Bayesian approach means that the measures of dis-
criminability inferred from data take into account sam-
pling variability, never need edge corrections, and are
valid for any sample size.

Graphical models provide a convenient formalism for
expressing many Bayesian models (e.g., Jordan, 2004).
Worked examples of this approach to psychological model-
ing can be found in Lee (2008b, 2008a); Lee and Wagen-
makers (2008); Shiffrin, Lee, Wagenmakers, and Kim
(submitted for publication). The basic idea is that the mod-
el is represented by a directed graph, with nodes corre-
sponding to variables, and the dependencies between
variables captured by edges, with each child node depend-
ing on its parents. We use the conventions that observed
variables have shaded nodes, while unobserved variables
are not shaded, and continuous variables have circular
nodes while discrete variables have square nodes. We also
use plates to denote independent replication of parts of the
graph. In addition, where it aids interpretation, and intro-
duces a meaningful psychological variable, we introduce
deterministic unobserved variables, shown as double-bor-
dered nodes.

We use the graphical model shown in Fig. 4 to infer
measures of discriminability di and bias ci for the ith sub-
ject. To estimate these measures, we use the SDT model
to reparameterize discriminability and bias into a hit rate
hi and a false-alarm rate fi of the ith subject, according to
the relationship

http://www.socsci.uci.edu/~mdlee/
http://www.socsci.uci.edu/~mdlee/


Fig. 4. Graphical model for inferring discriminability and bias from hit
and false-alarm counts in a yes/no recognition memory experiment.
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hi ¼ U
1
2

di � ci

� �
; ð3Þ

fi ¼ U �1
2

di � ci

� �
: ð4Þ

In the graphical model in Fig. 4 this reparameterization is
shown by the di, ci, hi, and fi nodes. The di and ci nodes
are shown as unshaded circles to indicate they are both
continuous variables with unknown values. The hi and fi

nodes are also circular, because they are also continuous,
but have double-borders, because they follow determinis-
tically from their parent di and ci nodes.

The model places priors on discriminability and bias
that correspond to the assumption of uniform priors for
the hit and false-alarm rates, as follows

di � Gaussian 0;2ð Þ; ð5Þ

ci � Gaussian 0;
1
2

� �
: ð6Þ

There are four counts for each condition for each subject
that constitute their observed data. These are all shown
as square and shaded nodes, because they take discrete
values and are observed. The number of target trials, T,
and the number of distractor trials, D, are the same for
all subjects in our experiment, and so are placed outside
the plate. The hit count, Hi and the false-alarm count Fi

vary across subjects. We assume the hit and false-alarm
counts follow a Binomial distribution depending on the
hit and false-alarm rates, and the number of target and dis-
tractor trials, so that

Hi � Binomial T; hið Þ; ð7Þ
Fi � Binomial D; fið Þ: ð8Þ

It is straightforward to implement the model in Fig. 4 using
free WinBUGS software (Lunn, Thomas, Best, & Spiegelhal-
ter, 2000), which provides the capability to sample from
the posterior (i.e., the distributions of the variables condi-
tional on the observed data) using standard Markov-Chain
Monte-Carlo computational methods (see Chen, Shao, &
Ibrahim, 2000; Gilks, Richardson, & Spiegelhalter, 1996;
Mackay, 2003).

Fig. 5 shows the posterior distributions for discrimina-
bility, hit rate and false-alarm in three illustrative situa-
tions, based on 104 posterior samples. In the first
situation, 70 hits and 50 false-alarms are observed in 100
target and 100 distractor trials. Because of the large num-
ber of trials, there is relatively little uncertainty surround-
ing the hit and false-alarm rates, with narrow posteriors
centered on 0.7 and 0.5, respectively. Discriminability is
known with some certainty, centered on about 0.5. In the
second situation, 7 hits and 5 false-alarms are observed
in 10 target and 10 distractor trials. These are the same
rates of hit and false-alarms of the first situation, but based
on many fewer samples. Accordingly, the posterior distri-
butions have (essentially) the same means, but show much
greater uncertainty. In the third situation, perfect perfor-
mance is observed, with 10 hits and no false-alarms in
10 target and 10 distractor trials. The modal hit and
false-alarm rates are 1.0 and 0.0, but other possibilities
have some density, and so discriminability is well defined.

Taken together, these illustrations show how the Bayes-
ian approach addresses the estimation problems 4–6. Com-
paring the first and second situation shows how posterior
distributions are sensitive to the uncertainty inherent in
sampling variability. The third situation shows that using
the full distribution avoids the need for edge corrections.
And posterior distributions can validly be found in exactly
the same way using any sample size.

Model selection

In a Bayesian analysis, competing theoretical positions
are represented by models, which can be compared di-
rectly to each other based on data. In all of our experimen-
tal comparisons, the main theoretical question is whether
there is a systematic change in discriminability between
two experimental conditions, measured subject by subject
according to the within-subjects design. For the filler and
no filler conditions, the interest is in whether short lists
have better discriminability than long lists. For the word
frequency comparison, the interest is in whether low fre-
quency words are more discriminable than high frequency
words.

Two competing models
For all of these comparisons, we consider two compet-

ing models. The ‘‘error-only” model assumes the within-
subject differences in discriminability come from a Gauss-
ian distribution of unknown variance, but with a mean of
zero. This model captures the assumption that there is no
systematic difference in discriminability, although there
will inevitably be noisy variation in the differences. For-
mally, the difference in discriminability between the first
and second conditions for the ith subject, Ddi ¼ dA

i � dB
i is

modeled as

Dei � Gaussian 0; keð Þ: ð9Þ

The alternative ‘‘error-plus-effect” model assumes the
within-subject differences in discriminability follows the
sum of a Gamma distribution and a zero-mean Gaussian
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Fig. 5. Posterior distributions for discriminability, hit rate, and false-alarm rate in three illustrative situations.
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distribution. This corresponds to the idea that there is a
systematic positive difference, as well as the noisy varia-
tion. Formally, Ddi is modeled as

Dfi ¼ f e
i þ f f

i ; ð10Þ

where f f
i is an effect component drawn from a Gamma

distribution,

f f
i � Gamma a;bð Þ; ð11Þ

and f e
i is an error component again drawn from a zero-

mean Gaussian distribution

f e
i � Gaussian 0; keð Þ: ð12Þ

The competing accounts of how each subjects’ discrimina-
bility changes across the different list-length conditions
can be seen visually in the way dA

i relates to dB
i in the

graphical model. These two discriminabilities differ by
Ddi for the ith subject, and this change is itself either gen-
erated by the error-only account (on the left side, involving
Dei) or by the error-plus-effect account (on the right side,
involving Dfi).

We assume standard near non-informative prior on the
variances for the error components (see Spiegelhalter, Tho-
mas, & Best, 1996)

ke � InverseGammað0:001; 0:001Þ; ð13Þ
kf � InverseGammað0:001; 0:001Þ; ð14Þ

and follow George, Makov, and Smith (1993) in placing a
near non-informative prior on the parameters of the effect
component

a � Exponential 1ð Þ; ð15Þ
b � Gamma 0:1;0:1ð Þ: ð16Þ

These priors on the variance and hyper-parameters of the
effect distribution are the least ‘‘principled” ones in our
model (i.e., their basic forms have a good justification,
but their exact values are more arbitrary). In our analyses,
we explored a large number of variations, such as using
InverseGammað0:01;0:01Þ for the variances, or a
Gammað0:01;0:01Þ prior on the b hyper-parameter in the
effect distribution. These changes all had only a slight
quantitative effect on the results, and supported exactly
the same conclusions.

Mixture model comparison
One standard Bayesian method for comparing models is

to calculate the Bayes Factor, which measures how much
more likely the data are to have arisen under one model
rather than the other. The Bayes Factor, however, poten-
tially does not meet our requirement of basing its inference
on the behavior of the majority of subjects. Because of the
all-or-none loss function the Bayes Factor seeks to opti-
mize (i.e., the Bayes Factor assumes one model is correct
and the other is incorrect), it is possible for one or a few ex-
treme subjects to over-ride the evidence of the majority.
For example, if almost all subjects behave according to a
simpler model, but one or two behave according to a much
more complicated model, the Bayes Factor will report evi-
dence in favor of the more complicated model. This is be-
cause, under these circumstances, if only one model is
true, and has to explain the behavior of all subjects, that
model has to be the more complicated one.

As a more satisfactory alternative, following Lee
(2008b), we use a Bayesian approach to model selection
based on mixture estimation. The key idea is that, rather
assuming exactly one model is correct and the other is
incorrect, we assume both models are useful, but one
may be more useful (i.e., be more likely to explain the
behavior of more subjects) than the other. For our current
problem, this approach means making inferences for each
subject as to whether they are better modeled by the er-
ror-only account or by the effect-and-error account, and
using this information to make an inference about underly-
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ing rate at which subjects are assigned to the two accounts.
The behavior of a small number of subjects can have only a
limited effect of the overall rate of assignment, and so the
conclusions are robust. And, as with all fully Bayesian
methods of model selection, the inference process is auto-
matically sensitive both to goodness-of-fit and model
complexity.

Combining the two models and their mixture compari-
son gives the graphical model show in Fig. 6. The binary
indicator variable xi controls which account is used to
model the difference Ddi for the ith subject,

Ddi ¼
Dei if xi is 0;
Dfi if xi is 1:

�
ð17Þ

and each xi has probability h of selecting the error-plus-ef-
fect account

x � Bernoulli hð Þ; ð18Þ

where we use assume a flat prior for the rate h

h � Uniform 0;1ð Þ: ð19Þ

This approach means that each subject is conceived as fol-
lowing either the error-only or error-plus-effect account,
as specified by their xi binary variable, and that there is a
fixed proportion of subjects who do each, as specified by
the h rate variable. From finite data, however, there will al-
ways be uncertainty about both which account each sub-
ject belongs to, and the exact value of the underlying rate
Fig. 6. Graphical model for inferring the rate subjects belong to the error-
plus-effect versus error-only accounts of the change in their discrimina-
bility between experimental conditions.
of belonging. This means there will be a posterior distribu-
tion for the xi variables (i.e., each subject will have some
number of posterior samples in the error-only account
and some number in the error-plus-effect account), as well
as a posterior distribution over the rate h. The uncertainty
about belonging in the posteriors for the xi variables is nat-
urally represented in the posterior of the h mixing propor-
tion, which essentially measures the probability any
subject will be classified as an error-only versus error-
plus-effect subject.

Bayesian results

We again implemented the graphical model in Fig. 6 in
WinBUGS. We obtained 5 � 104 posterior samples for the
three theoretical comparisons—list length with filler, list
length without filler and word frequency—after a burn-in
period of 103 samples (i.e., a set of samples that are dis-
carded, to allow the MCMC sampling to adapt to the stage
where it is sampling from the posterior distribution), and
using multiple chains (i.e., multiple independent runs of
the sampling process with different starting points) to
diagnose convergence.

Overall rate of assignment
Fig. 7 presents the posterior distributions of the rate h at

which subjects are best modeled by the error-plus-effect
model for each comparison. The most likely rates are small
for the list length comparisons, indicating that most sub-
jects are better modeled by the error-only account. In con-
trast, for the word frequency comparison, the most likely
rates are large, indicating that subjects are most likely bet-
ter modeled by the error-plus-effect account. These results
show how the Bayesian approach addresses model selec-
tion problem 1, because it is possible to find evidence di-
rectly for the ‘‘null” error-only model, as well as for the
‘‘alternative” error-plus-effect model.
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Fig. 7. Posterior distribution of the underlying rate subjects are better
modeled by the error-plus-effect account for the filler, no filler, and word
frequency comparisons.
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Fig. 9. Iterative analyses for the (A) word frequency, (B) list length
without filler, (C) list length with filler, and (D) exclusion of extreme
subjects in the list length without filler comparisons. Each panel shows
the error-only (EO), error-plus-effect (EE) and both possibilities, corre-
sponding to proportions of the rate posterior h between 0 and 0.1, 0.1 and
0.9, and 0.9 and 1.0, respectively. For (A–C), the paths show these
proportions in iterative analyses, adding another six subjects on each
iteration. For (D), the crosses show the proportions resulting from
excluding the one, two, three or four most extreme subjects in favor of
the error-plus-effect account from the list length without filler analysis,
as well as for the original full analysis.
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Individual subject analysis
More detail on the Bayesian model results is provided

by Fig. 8 which shows, in the upper panels, the posterior
predictive distributions of the error-only and error-plus-ef-
fect accounts for all three comparisons. These correspond
to the expected distribution of differences in discriminabil-
ity under the two competing models, based on the experi-
mental data. Fig. 8 also shows, in the lower panels, the
modeled mean and 95% credible intervals for the observed
differences in discriminability for each subject. Those sub-
jects most often assigned to the error-only account have
means shown by white circles, while those most often as-
signed to the error-plus-effect account have means shows
by black circles. Note that, even though the most likely
assignment for each subject is the same in each analysis
(always error-plus-effect for word frequency, but always
error-only for the two list-length conditions), these assign-
ments are not certain, and the posterior distribution over
the h rates in Fig. 7 represents this uncertainty.

Iterative analysis
A basic property of the Bayesian approach is that infer-

ences can be made at any stage of data collection, and so
the method can be applied iteratively. To demonstrate this,
we found the posterior rates h for the first 6;12; . . . ;48 sub-
jects in each comparison. As a summary measure of each
posterior distribution, we then calculated the proportion
of the rate posterior between 0 and 0.1, between 0.1 and
0.9, and between 0.9 and 1.0. The idea is that these three
categories correspond to support for just the error-only
model, for both models, and for just the error-plus-effect
models, respectively. In this way, we can summarize the
full posterior distribution of h by three proportions that



4 We note that there is an unavoidable theoretical indeterminacy in the
unequal-variance SDT model, because the distractor and target distribu-
tions intersect twice. We follow previous practice and avoid this problem
by taking the practical stance that it is the point of intersection between the
means of the distribution that is of psychological interest.
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sum to one, and tell us whether one or the other, or both,
competing models are useful in explaining the data.

The results of this analysis are shown in Fig. 9. Panels A,
B, and C correspond the word frequency, no filler, and filler
comparisons, respectively. In each panel, the three possi-
bilities are represented as the vertices of a triangle, and
the relative weight given to each as the iterative analysis
progresses is shown by a path in this triangle. The shading
inside the triangle corresponds to critical proportions of
0.5, 0.7, and 0.9 in favor of each possibility. It is clear that
the word frequency comparison quickly provides strong
evidence for the error-plus-effect account, while both the
no filler and filler comparisons provide strong evidence
for the error-only account. This demonstration makes it
clear that the Bayesian approach addresses model selection
problem 2. In an iterative experiment, it would be statisti-
cally justified to terminate data collection once a pre-
determined critical level was reached, and so collect data
from as many subjects as required to reach a conclusion.

Panel D of Fig. 9 shows the proportions for the no filler
comparison resulting from excluding the one, two, three
or four most extreme subjects favoring the error-plus-effect
account from the analysis, as well as for the original full
data analysis. Because the points are nearby, the various
exclusions do not greatly affect the conclusions that would
be drawn. In general, estimating the rate of assignment will
not change drastically if a few subjects are excluded. This is
why the Bayesian method makes inference based on major-
ity behavior, and so addresses model selection problem 3.
In contrast, we note that starting with the full dataset and
then excluding the same one, two, three or four subjects
from the no filler data under the standard analysis, the F
values decrease from 4.44 to 2.81 to 2.02 to 1.29 to 0.83,
with an associated increase in the p-values from .04 to .10
to .16 to .26 to .37. In this case, the exclusion of a single sub-
ject is sufficient to change the substantive conclusion.

Extension to unequal variance SDT

One reasonable criticism of the preceding analysis is
that its use of the equal-variance form of SDT may be inap-
propriate. As reviewed by Mickes, Wixted, and Wais
(2007), empirical examination of receiver operating char-
acteristic (ROC) curves in SDT analyses of recognition
memory data typically show that the standard deviation
of the distractor distribution, rd, is smaller than the stan-
dard deviation of the target distribution, rt. Mickes et al.
(2007) present additional supporting empirical evidence
for this difference, and argue that the standard deviation
of the distractor distribution is approximately only 80%
as large as for the target distribution, so that rd=rt � 0:8.

A straightforward way to extend our analysis to allow
for unequal-variances within the SDT framework is to
incorporate direct assumptions about the ratio of standard
deviations. In the graphical model this means introducing a
new observed variable s ¼ rd=rt, which specifies an as-
sumed level for unequal variances, and redefining the
false-alarm rates to be

fi ¼ U �1
s

di=2� cið Þ
� �

: ð20Þ
All other part of the model can remain unchanged.4 This
extended model includes the original equal-variance model
as a special case when s ¼ 1, but allows assumptions such
as s ¼ 0:8, or any other value of interest, to be examined.

Fig. 10 shows the results of a series of analyses of the
posterior rate of assignment making different assumptions
about the ratio of variances. The analyses use
s ¼ 0:1;0:5;0:8;1;2; and 10, and so consider cases where
the distractor distribution is both more and less variable
than the target distribution. It is clear that the same con-
clusions found in the equal-variance case in Fig. 7 hold
for all but the most extreme assumptions about unequal
variances (i.e., when s ¼ 10 and the distractor distribution
has a tenfold larger standard deviation than the target dis-
tribution). For the ‘‘reasonable” assumptions about s,
where the distractor distribution is less variable, especially
including the s ¼ 0:8 advocated by Mickes et al. (2007),
there remains strong evidence for an effect in the word-
frequency condition, but strong evidence for no effect in
the list-length conditions.

Discussion

In this section, we start by outlining how the current
results bear on the issue of whether item noise or con-
text noise dominates recognition memory and explain
how the impact of contextual reinstatement could re-
solve the contradictory results found by Dennis and
Humphreys (2001) and Cary and Reder (2003). Next,
we discuss the implications of these results for dual pro-
cess models of recognition. Finally, we argue that the
Bayesian approach to analysis that we have proposed
has significant advantages and that adoption of these
sorts of techniques may prove an important step to-
wards resolving a number of the issues that plague cur-
rent memory research.

Item noise, context noise, and the status of the list length
debate

Recognition memory involves bringing together infor-
mation about the test item and its context (Humphreys
et al., 1994). Consequently, interference in the paradigm
can logically derive from one or both of two sources. Item
noise models propose that interference comes primarily
from the other items that appeared in the study list, while
context noise models propose that interference comes pri-
marily from the other contexts in which the test item has
been seen.

The majority of existing models of recognition assume
an item noise approach (Clark & Gronlund, 1996; Eich,
1982; Gillund & Shiffrin, 1984; Hintzman, 1986; Humph-
reys et al., 1989; McClelland & Chappell, 1998; Murdock,
1982; Shiffrin & Steyvers, 1997). However, Dennis and
Humphreys (2001) argued that by proposing that recogni-
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Fig. 10. Posterior distribution of the underlying rate subjects are better modeled by the error-plus-effect account for the filler, no filler, and word frequency
comparisons for six different assumptions about the ratio of standard deviations for the distractor and target distributions.
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tion is a context noise process, while recall is an item noise
process, one can make sense of several key dissociations
between the procedures.

First, performance on low frequency words is better
than for high frequency words in recognition, whereas
either no effect or a high frequency advantage is typically
found in recall (Gillund & Shiffrin, 1984; Glanzer & Adams,
1985). If recognition is dominated by context noise, low
frequency words will be subject to less interference, and
will be recognized better. If recall is not subject to context
noise, low frequency words will be subject to the same le-
vel of interference, and no effect will be found.

Second, in recognition, performance on an item is unaf-
fected by the strength of the other items in the list (Ratcliff
et al., 1990). This phenomenon is called the null list-
strength effect. In recall, however, strengthening some
items in a list impairs performance on the unstrengthened
items. If recognition is dominated by context noise, the
strengthening of other items will not impact performance.
If recall is dominated by item noise, strengthening other
items increases interference for unstrengthened items.

The final, and most controversial, line of argument in-
volves the list length effect. The status of the list-length ef-
fect is particularly important in distinguishing between
models of recognition memory because item noise models
have been developed that can account for the word fre-
quency and null list-strength results. The prediction of a
list-length effect, however, would seem to be an inescap-
able consequence of the item noise assumption.

Dennis and Humphreys (2001) argued that a number of
potential confounds including retention interval, attention,
rehearsal, and contextual reinstatement could lead to arti-
factual list-length effects. When they controlled for these
confounds Dennis and Humphreys (2001) found no list
length effects. However, Cary and Reder (2003) have con-
tested this conclusion finding a list-length effect using sim-
ilar controls.

Cary and Reder (2003) argued that the threefold in-
crease in length—24 items to 72 items—employed by Den-
nis and Humphreys (2001) was insufficient to observe an
effect. They employed a fourfold increase—20 items to 80
items—and found a list-length effect. As outlined in the
introduction, however, there were a number of other dif-
ferences between the experiments that could have led to
the differences in the results.

Cary and Reder (2003) only analyzed the combined
proactive and retroactive results. As proactive designs
are inevitably subject to attention confounds this is prob-
lematic. Secondly, Cary and Reder (2003) employed the
remember know procedure which may introduce a recall
component, and a concomitant length effect, not present
in yes/no recognition. Thirdly, Cary and Reder (2003) em-
ployed a much shorter period between the end of the
long list and test than did Dennis and Humphreys
(2001) creating the possibility that differences in contex-
tual reinstatement may have precipitated the length
effect.

In the current work, we provide confirmation that when
all of the controls proposed by Dennis and Humphreys
(2001) are implemented no list length effect is found even
when a 1:4 ratio of list lengths is employed—20 items to 80
items. It would seem that the inability of Dennis and
Humphreys (2001) to find a list-length effect was not
due to an insufficient length manipulation. Furthermore,
under the standard analysis (which was the procedure
employed by Cary & Reder, 2003) manipulating the filler
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period after studying the long list does effect the occur-
rence of the list-length effect. When an 8 min filler period
is employed, we find no list-length effect, when it is not we
find a list-length effect. So, it would seem quite possible
that the more stringent requirement on subjects to rein-
state context in both short and long conditions is a critical
difference between the Dennis and Humphreys (2001)
study and the Cary and Reder (2003) study that could ex-
plain the difference in results.

Implications for dual process models of recognition

Dual process accounts propose that recognition in-
volves two separate processes or components, often
termed familiarity and recollection. Yonelinas (2002) sur-
veys dual process theories including those proposed by
Atkinson and Juola (1974), Mandler (1980), Jacoby
(1991), Tulving (1982), and Yonelinas (1994).

While there has been great interest in the dual process
framework, there has also been a great deal of contention
and the properties of the processes remain obscure. For in-
stance, it is commonly assumed that familiarity is a rapid
process while recollection unfolds over a longer time
frame. However, Dewhurst, Holmes, brandt, and Dean
(2006) have argued that the reverse is true. Some models
propose that familiarity and recollection are independent
processes that operate in parallel, while others propose
that recollection and familiarity are redundant processes
(Joordens & Merikle, 1993). Several models propose that
familiarity gives rise to a continuous form of evidence,
while recollection provides categorical information based
on the retrieval of particular features. However, Wixted
(2007) argues that the receiver operating characteristic
(ROC) data support a version of the dual process model
in which both familiarity and recollection are continuous
processes. Yonelinas (2002) outlines the debates that have
arisen about a number of other properties including
whether familiarity and recollection reflect perceptual
and conceptual processes, respectively, the time course of
availability of familiarity and recollection across trials,
the degree to which the processes support learning of no-
vel information, how familiarity relates to implicit memory
and what the neural substrates of familiarity and recollec-
tion might be. In addition, there is a significant literature
that directly disputes the dual process claim (e.g., Dunn,
2004).

While there is little concensus on the properties of the
underlying processes, a reasonably common assumption
is that recollection involves some form of ‘‘recall-like” pro-
cess. In some theories, such as those by Mandler (1980)
and Tulving (1982), the connection to recall is explicit
and recall tests are assumed to be directly relevant to the
measurement of recollection. However, even in theories
which do not accept recall as a surrogate for recollection,
descriptions of the recollection process seem to have much
in common with recall. So, for instance, Jacoby (1991) de-
scribes recollection as the retrieval of specific contextual
elements and elaborations—such as a jackhammer starting
during the study episode—an operation that seems similar
to cued recall.
As outlined above, it is commonly assumed that recall
processes are subject to item interference and list-length
effects in recall are typically robust. A lack of a list-length
effect in recognition then, creates a problem for dual pro-
cess accounts, because to the extent that ‘‘recall-like” pro-
cesses underpin recognition they should induce a length
effect. If there is no length effect in recognition then ‘‘re-
call-like” processes cannot be playing a substantive role.

The Bayesian analysis of recognition memory experiments

Because of its unresolved status, the presence or absence
of the list length effect makes an ideal case study for
improving the analysis of recognition memory experi-
ments. The current frequentist methods for estimation,
and null hypothesis significance testing methods for model
selection, have a number of undesirable properties. Using
the standard approach, evidence cannot be found in favor
of the possibility there is no list-length effect. The results
of the standard approach can be determined by a small pro-
portion of subjects, contrary to the aim of inferring general
properties of the memory system. The standard approach
requires a fixed sample size be established before experi-
mentation begins. These sample sizes must be large for
the statistical assumptions of the standard approach to be
sound, and sufficiently large sample sizes are guaranteed
to reject the null hypothesis. Frequentist point estimates
of discriminability are insensitive to the uncertainty associ-
ated with sampling variability, and require edge corrections
that can have a large effect on the results.

It is difficult to determine how important the limita-
tions of the standard analysis are in the progress of the
field. We suspect, however, that they may be quite impor-
tant. In the current dataset, the removal of a single subject
was sufficient to change the substantive conclusions using
the standard analysis. One must wonder how many fail-
ures to replicate lie gathering dust in bottom draws be-
cause current analysis methods in combination with
publication biases provide no mechanism by which the
field might recover from these anomalies.

Bayesian methods, like those outlined in this paper,
raise the bar. They require that an effect must be demon-
strated by a majority of subjects before it is considered sig-
nificant. That does not seem like an unreasonable demand,
however, and certainly represents the kind of foundation
on which one would want to build a theory of recognition
and a science of memory.

Conclusions

In this paper, we have developed and applied a Bayesian
approach to understanding recognition memory using sig-
nal detection theory. We demonstrated how the Bayesian
method overcomes the problems with the standard meth-
ods by applying both to a new set of data. The fact that the
Bayesian analysis found evidence for the absence of a list-
length effect for words supports a context noise account of
recognition memory, challenges item noise accounts and
suggests that ‘‘recall-like” processes play no substantive
role in yes/no recognition.
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Appendix. Raw data
H F F
Participant
H

High
F

Low
F
its
 As
 Hits
 As
Long no filler condition

1
 8
 3
 10
 1

2
 9
 0
 8
 1

3
 8
 3
 9
 0

4
 10
 2
 10
 3

5
 7
 0
 8
 0

6
 10
 1
 8
 0

7
 8
 1
 9
 0

8
 8
 7
 10
 4

9
 9
 0
 10
 0
10
 8
 1
 8
 0

11
 8
 2
 9
 0

12
 7
 0
 10
 0

13
 6
 2
 8
 0

14
 9
 3
 10
 0

15
 4
 3
 8
 0

16
 8
 1
 9
 0

17
 9
 1
 8
 1

18
 10
 0
 9
 0

19
 7
 5
 10
 4

20
 9
 0
 9
 0

21
 9
 4
 7
 1

22
 8
 1
 10
 1

23
 9
 0
 10
 0

24
 9
 1
 10
 4

25
 7
 3
 8
 0

26
 9
 0
 10
 2

27
 10
 2
 9
 2

28
 8
 3
 8
 1

29
 10
 2
 10
 0

30
 10
 2
 10
 0

31
 8
 1
 9
 0

32
 10
 1
 10
 0

33
 8
 0
 8
 1

34
 8
 1
 5
 1

35
 9
 3
 9
 1

36
 8
 3
 9
 2

37
 8
 1
 9
 0

38
 10
 0
 10
 1

39
 9
 4
 7
 1

40
 9
 4
 8
 1

41
 8
 2
 9
 1

42
 9
 2
 9
 0

43
 8
 1
 9
 1

44
 9
 0
 8
 0

45
 9
 1
 9
 0

46
 6
 2
 6
 1

47
 7
 6
 9
 0

48
 4
 0
 4
 3
Long filler condition

1
 8
 4
 10
 6

2
 8
 3
 10
 0

3
 6
 5
 9
 0
Appendix (continued)
Participant
 High
 Low
its
 As
 Hits
 As
4
 10
 5
 10
 1

5
 6
 0
 9
 1

6
 10
 3
 10
 0

7
 10
 1
 9
 0

8
 8
 6
 10
 2

9
 8
 3
 7
 2
10
 8
 3
 8
 3

11
 4
 3
 6
 0

12
 10
 3
 9
 0

13
 5
 3
 8
 0

14
 9
 5
 10
 3

15
 10
 6
 9
 1

16
 8
 0
 9
 0

17
 9
 3
 10
 3

18
 10
 1
 9
 0

19
 8
 4
 10
 2

20
 8
 1
 7
 0

21
 9
 5
 8
 1

22
 7
 2
 6
 1

23
 8
 0
 9
 0

24
 10
 3
 10
 3

25
 8
 3
 9
 0

26
 9
 2
 9
 0

27
 8
 4
 9
 1

28
 9
 6
 8
 1

29
 10
 2
 10
 1

30
 10
 3
 10
 1

31
 8
 1
 10
 0

32
 9
 1
 10
 1

33
 7
 3
 8
 2

34
 6
 2
 7
 1

35
 8
 2
 9
 1

36
 10
 5
 10
 2

37
 10
 2
 10
 0

38
 9
 1
 10
 1

39
 10
 0
 8
 2

40
 9
 5
 8
 1

41
 7
 3
 7
 1

42
 9
 4
 10
 5

43
 9
 3
 9
 0

44
 10
 1
 10
 0

45
 10
 1
 10
 1

46
 8
 2
 10
 1

47
 9
 7
 10
 3

48
 6
 3
 6
 1
Short no filler condition

1
 6
 2
 9
 0

2
 8
 1
 8
 0

3
 10
 0
 10
 0

4
 10
 0
 10
 0

5
 6
 1
 6
 0

6
 10
 3
 10
 1

7
 10
 1
 10
 0

8
 9
 2
 10
 4

9
 9
 6
 10
 3
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Appendix (continued)
Participant
H

High
F

Low
F H F F
its
 As
 Hits
 As
10
 8
 3
 10
 0

11
 8
 0
 10
 0

12
 10
 1
 10
 0

13
 7
 4
 10
 1

14
 9
 2
 10
 2

15
 8
 4
 10
 0

16
 5
 0
 8
 1

17
 8
 1
 10
 1

18
 10
 1
 10
 0

19
 9
 1
 10
 0

20
 8
 0
 10
 0

21
 10
 5
 9
 1

22
 9
 4
 9
 1

23
 9
 0
 10
 0

24
 9
 2
 8
 0

25
 9
 2
 8
 1

26
 9
 0
 10
 0

27
 10
 1
 9
 0

28
 9
 2
 8
 1

29
 8
 3
 10
 4

30
 10
 1
 10
 1

31
 6
 0
 9
 0

32
 10
 0
 10
 0

33
 2
 1
 5
 0

34
 9
 3
 10
 0

35
 10
 0
 10
 0

36
 10
 1
 9
 0

37
 8
 0
 9
 0

38
 10
 2
 10
 0

39
 6
 1
 6
 1

40
 8
 5
 8
 1

41
 7
 3
 9
 2

42
 8
 4
 6
 1

43
 9
 1
 8
 0

44
 10
 0
 10
 0

45
 10
 0
 10
 0

46
 8
 2
 9
 0

47
 8
 7
 9
 0

48
 5
 4
 9
 0
Short filler condition

1
 7
 4
 10
 2

2
 7
 6
 9
 2

3
 5
 3
 6
 3

4
 9
 3
 10
 1

5
 7
 0
 9
 0

6
 10
 2
 10
 0

7
 5
 2
 8
 1

8
 9
 1
 9
 1

9
 6
 9
 8
 1
10
 9
 5
 10
 0

11
 7
 4
 9
 0

12
 9
 2
 10
 0

13
 7
 5
 7
 2

14
 8
 2
 9
 0

15
 9
 6
 10
 1
Appendix (continued)
Participant
 High
 Low
its
 As
 Hits
 As
16
 6
 0
 10
 0

17
 7
 2
 10
 4

18
 10
 0
 10
 0

19
 10
 7
 10
 5

20
 9
 0
 9
 0

21
 8
 5
 9
 0

22
 9
 2
 8
 0

23
 10
 2
 9
 0

24
 8
 1
 10
 0

25
 10
 2
 10
 0

26
 10
 0
 10
 0

27
 10
 6
 10
 2

28
 10
 4
 10
 2

29
 10
 2
 10
 6

30
 10
 2
 10
 0

31
 9
 1
 9
 2

32
 10
 1
 10
 0

33
 6
 3
 3
 1

34
 10
 6
 9
 1

35
 10
 6
 8
 3

36
 10
 4
 10
 4

37
 9
 1
 10
 0

38
 10
 1
 9
 0

39
 6
 4
 9
 2

40
 10
 0
 10
 1

41
 9
 0
 8
 2

42
 10
 7
 10
 2

43
 5
 4
 7
 1

44
 9
 0
 8
 0

45
 10
 4
 10
 1

46
 10
 0
 9
 1

47
 10
 3
 8
 1

48
 8
 3
 7
 1
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